Galois theories, transcendence, Manin maps, and the model theory of differentially closed fields

Anand Pillay

University of Leeds

June 11, 2013

 This is a report on some joint works with Daniel Bertrand with common themes.

- This is a report on some joint works with Daniel Bertrand with common themes.
- The first is a strengthening of our Ax-Lindemann theorem for nonconstant semiabelian varieties, but with a differential Galois-theoretic proof, avoiding the socle theorem (CBP):

- This is a report on some joint works with Daniel Bertrand with common themes.
- The first is a strengthening of our Ax-Lindemann theorem for nonconstant semiabelian varieties, but with a differential Galois-theoretic proof, avoiding the socle theorem (CBP):
- Suppose B is a semiabelian variety over K = C(t)^{alg} with "semiconstant part " B₀ and assume B₀ is over C. Let x ∈ LB(K)and let y = exp(x) ∈ B. Then y is a generic point over K[‡] (so also over K) of an algebraic subgroup of G, necessarily defined over K. Explain.

- This is a report on some joint works with Daniel Bertrand with common themes.
- The first is a strengthening of our Ax-Lindemann theorem for nonconstant semiabelian varieties, but with a differential Galois-theoretic proof, avoiding the socle theorem (CBP):
- Suppose B is a semiabelian variety over K = C(t)^{alg} with "semiconstant part " B₀ and assume B₀ is over C. Let x ∈ LB(K)and let y = exp(x) ∈ B. Then y is a generic point over K[‡] (so also over K) of an algebraic subgroup of G, necessarily defined over K. Explain.
- Equivalently, assuming that $x \notin L(H) + B_0(\mathbb{C})$ for any proper algebraic subgroup H of B, then $tr.deg(K^{\sharp}(y)/K^{\sharp}) = dim(B).$

- This is a report on some joint works with Daniel Bertrand with common themes.
- The first is a strengthening of our Ax-Lindemann theorem for nonconstant semiabelian varieties, but with a differential Galois-theoretic proof, avoiding the socle theorem (CBP):
- Suppose B is a semiabelian variety over K = C(t)^{alg} with "semiconstant part " B₀ and assume B₀ is over C. Let x ∈ LB(K)and let y = exp(x) ∈ B. Then y is a generic point over K[♯] (so also over K) of an algebraic subgroup of G, necessarily defined over K. Explain.
- Equivalently, assuming that $x \notin L(H) + B_0(\mathbb{C})$ for any proper algebraic subgroup H of B, then $tr.deg(K^{\sharp}(y)/K^{\sharp}) = dim(B).$
- ► Here K[#] is the differential field generated over K by solutions of µ_B(-) = 0 in K^{diff} where µ_B is the Manin map, and replacing K by K[#] is the strengthening.

▶ The relevance of μ_B is that y = exp(x) implies $\mu_B(y) \in LB(K)$. This Manin homomorphism will be discussed later.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ▶ The relevance of μ_B is that y = exp(x) implies $\mu_B(y) \in LB(K)$. This Manin homomorphism will be discussed later.
- In fact in trying to formulate an Ax-Schanuel statement in the nonconstant case, namely estimating the transcendence degree of (x, exp(x)) for any x ∈ LB (with x not necessarily over K or K^{alg}) it is natural to work over both ker(µ_B) and the relevant field of periods. And estimating transcendence degrees over the field generated by the periods is crucial in "Relative Manin-Mumford for semi-abelian surfaces" (BMPZ).

- The relevance of µ_B is that y = exp(x) implies µ_B(y) ∈ LB(K). This Manin homomorphism will be discussed later.
- In fact in trying to formulate an Ax-Schanuel statement in the nonconstant case, namely estimating the transcendence degree of (x, exp(x)) for any x ∈ LB (with x not necessarily over K or K^{alg}) it is natural to work over both ker(µ_B) and the relevant field of periods. And estimating transcendence degrees over the field generated by the periods is crucial in "Relative Manin-Mumford for semi-abelian surfaces" (BMPZ).
- The second result concerns the Manin homomorphism μ_A for A a simple abelian variety over K^{alg} with C-trace 0. μ_A is a certain differential rational homomorphism from A onto a vector space, discussed in detail later, where we consider points in an ambient differentially closed field.

- The relevance of µ_B is that y = exp(x) implies µ_B(y) ∈ LB(K). This Manin homomorphism will be discussed later.
- ▶ In fact in trying to formulate an Ax-Schanuel statement in the nonconstant case, namely estimating the transcendence degree of (x, exp(x)) for any $x \in LB$ (with x not necessarily over K or K^{alg}) it is natural to work over both $ker(\mu_B)$ and the relevant field of periods. And estimating transcendence degrees over the field generated by the periods is crucial in "Relative Manin-Mumford for semi-abelian surfaces" (BMPZ).
- The second result concerns the Manin homomorphism μ_A for A a simple abelian variety over K^{alg} with C-trace 0. μ_A is a certain differential rational homomorphism from A onto a vector space, discussed in detail later, where we consider points in an ambient differentially closed field.
- ► The "theorem of the kernel" implies that ker(µ_A)(K^{alg}) is precisely the torsion points.

Udi asked us whether this can be strengthened to the statement:

- Udi asked us whether this can be strengthened to the statement:
- ▶ If $y_1, ..., y_n \in A(K^{alg})$ are linearly independent over \mathbb{Z} then $\mu_A(y_1), ..., \mu_A(y_n)$ are linearly independent over \mathbb{C} (i.e. over the constants).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Udi asked us whether this can be strengthened to the statement:
- ▶ If $y_1, ..., y_n \in A(K^{alg})$ are linearly independent over \mathbb{Z} then $\mu_A(y_1), ..., \mu_A(y_n)$ are linearly independent over \mathbb{C} (i.e. over the constants).
- ▶ Note that the *n* = 1 case is the differential algebraic theorem of the kernel.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Udi asked us whether this can be strengthened to the statement:
- If y₁,.., y_n ∈ A(K^{alg}) are linearly independent over Z then µ_A(y₁), .., µ_A(y_n) are linearly independent over C (i.e. over the constants).
- ► Note that the n = 1 case is the differential algebraic theorem of the kernel.
- This general statement is true in many cases (such as when A is an elliptic curve), but an example of Yves André yields a counterexample (with some work).

- Udi asked us whether this can be strengthened to the statement:
- If y₁,.., y_n ∈ A(K^{alg}) are linearly independent over Z then µ_A(y₁), .., µ_A(y_n) are linearly independent over C (i.e. over the constants).
- Note that the n = 1 case is the differential algebraic theorem of the kernel.
- This general statement is true in many cases (such as when A is an elliptic curve), but an example of Yves André yields a counterexample (with some work).
- ▶ However the following statement, also generalizing the theorem of the kernel does hold: If $y_1, ..., y_n \in A(K^{alg})$ are linearly independent over End(A) then $\mu_A(y_1), ..., \mu_A(y_n)$ are linearly independent over \mathbb{C} , also with a differential Galois-theoretic proof.

 We start to give some common background to the results mentioned above.

- We start to give some common background to the results mentioned above.
- ► We work in a saturated differentially closed field U whose field of constants C may be assumed to be C.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We start to give some common background to the results mentioned above.
- ► We work in a saturated differentially closed field U whose field of constants C may be assumed to be C.
- ► The classical logarithmic derivative dlog map on GL_n (and any algebraic subgroup defined over C) is (∂Z)Z⁻¹, a crossed homomorphism to M_n (the Lie algebra or tangent space at the identity).

(日) (同) (三) (三) (三) (○) (○)

- We start to give some common background to the results mentioned above.
- ► We work in a saturated differentially closed field U whose field of constants C may be assumed to be C.
- ► The classical logarithmic derivative dlog map on GL_n (and any algebraic subgroup defined over C) is (∂Z)Z⁻¹, a crossed homomorphism to M_n (the Lie algebra or tangent space at the identity).
- ► The Galois theory of linear differential equations concerns the (differential) field L generated over K by a solution Z in GL_n(K^{diff}) of an equation dlog(Z) = A where A ∈ M_n(K) (K any differential field with algebraically closed field C(K)of constants).

- We start to give some common background to the results mentioned above.
- ► We work in a saturated differentially closed field U whose field of constants C may be assumed to be C.
- ► The classical logarithmic derivative dlog map on GL_n (and any algebraic subgroup defined over C) is (∂Z)Z⁻¹, a crossed homomorphism to M_n (the Lie algebra or tangent space at the identity).
- ► The Galois theory of linear differential equations concerns the (differential) field L generated over K by a solution Z in GL_n(K^{diff}) of an equation dlog(Z) = A where A ∈ M_n(K) (K any differential field with algebraically closed field C(K)of constants).
- ► Aut_∂(L/K) has naturally the form G(C(K)) for an algebraic subgroup G of GL_n over C(K).

► Kolchin generalized this, replacing GL_n by any algebraic group defined over the constants.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► Kolchin generalized this, replacing GL_n by any algebraic group defined over the constants.
- ► For algebraic groups G not necessarily defined over the constants, one requires a so-called ∂-group structure on G to be able to define an analogous logarithmic derivative ∂ln_G from G to its Lie algebra LG.

- ► Kolchin generalized this, replacing GL_n by any algebraic group defined over the constants.
- ► For algebraic groups G not necessarily defined over the constants, one requires a so-called ∂-group structure on G to be able to define an analogous logarithmic derivative ∂ln_G from G to its Lie algebra LG.
- A ∂-group structure on G is an extension of the derivation ∂ (on the differential field over which G is defined) to the structure sheaf of G which respects co-multiplication, equivalently a rational homomorphic section s : G → T_∂G from G to a certain shifted tangent bundle of G.

- ▶ Kolchin generalized this, replacing *GL_n* by any algebraic group defined over the constants.
- ► For algebraic groups G not necessarily defined over the constants, one requires a so-called ∂-group structure on G to be able to define an analogous logarithmic derivative ∂ln_G from G to its Lie algebra LG.
- A ∂-group structure on G is an extension of the derivation ∂ (on the differential field over which G is defined) to the structure sheaf of G which respects co-multiplication, equivalently a rational homomorphic section s : G → T_∂G from G to a certain shifted tangent bundle of G.

▶ Then ∂ln_G is the (definable) map $y \to \partial(y) \cdot s(y)^{-1}$ (\cdot computed in the algebraic group $T_{\partial}(G)$).

▶ If *B* is a semiabelian variety then its "universal vectorial extension" \tilde{B} (where we have $0 \rightarrow W_B \rightarrow \tilde{B} \rightarrow B \rightarrow 0$) has a unique ∂ -group structure, as does the quotient of \tilde{B} by an algebraic ∂ -subgroup contained in W_B .

(日) (同) (三) (三) (三) (○) (○)

- ▶ If *B* is a semiabelian variety then its "universal vectorial extension" \tilde{B} (where we have $0 \rightarrow W_B \rightarrow \tilde{B} \rightarrow B \rightarrow 0$) has a unique ∂ -group structure, as does the quotient of \tilde{B} by an algebraic ∂ -subgroup contained in W_B .
- ► Then ∂ln_{B̃} induces a (definable) map from B to LB̃/∂ln_{B̃}(W_B) (a C-vector space) which is the differential algebraic/model-theoretic Manin map µ_B.

- ▶ If *B* is a semiabelian variety then its "universal vectorial extension" \tilde{B} (where we have $0 \rightarrow W_B \rightarrow \tilde{B} \rightarrow B \rightarrow 0$) has a unique ∂ -group structure, as does the quotient of \tilde{B} by an algebraic ∂ -subgroup contained in W_B .
- ► Then ∂ln_{B̃} induces a (definable) map from B to LB̃/∂ln_{B̃}(W_B) (a C-vector space) which is the differential algebraic/model-theoretic Manin map µ_B.
- ▶ Differentiating $\partial ln_{\tilde{B}}$ at the identity yields a definable homomorphism $\partial_{L\tilde{B}}$ from $L\tilde{B}$ to itself (the Gauss-Manin connection).

▶ The Ax-Lindemann theorem mentioned in the introduction is proved by passing to \tilde{B} , lifting x to $\tilde{x} \in L\tilde{B}(K^{alg})$, and y to $\tilde{y} \in \tilde{B}$ such that $exp(\tilde{y}) = \tilde{x}$.

- ▶ The Ax-Lindemann theorem mentioned in the introduction is proved by passing to \tilde{B} , lifting x to $\tilde{x} \in L\tilde{B}(K^{alg})$, and y to $\tilde{y} \in \tilde{B}$ such that $exp(\tilde{y}) = \tilde{x}$.
- Then noting that ∂ln_{B̃}(ỹ) = ∂_{LB̃}(x̃), and giving a differential-Galois-theoretic proof (using also Manin-Coleman-Chai..) that tr.deg(K[♯](ỹ)/K[♯]) = dim(B̃).

(日) (同) (三) (三) (三) (○) (○)

- ▶ The Ax-Lindemann theorem mentioned in the introduction is proved by passing to \tilde{B} , lifting x to $\tilde{x} \in L\tilde{B}(K^{alg})$, and y to $\tilde{y} \in \tilde{B}$ such that $exp(\tilde{y}) = \tilde{x}$.
- Then noting that ∂ln_{B̃}(ỹ) = ∂_{LB̃}(x̃), and giving a differential-Galois-theoretic proof (using also Manin-Coleman-Chai..) that tr.deg(K[♯](ỹ)/K[♯]) = dim(B̃).
- Now K[♯] is the (algebraic closure if one wishes of the) differential field generated by K = C(t) and the solutions of ∂ln_{B̃}(−) = 0 in the differential closure K^{diff} of K.

I will now give the underlying differential Galois-theoretic background and results.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- I will now give the underlying differential Galois-theoretic background and results.
- ▶ Fix an algebraic ∂ -group (G, s) over an (algebraically closed) differential field K (not necessarily $\mathbb{C}(t)$), and a logarithmic differential equation $\partial ln_G(y) = a$ where $a \in LG(K)$.

- I will now give the underlying differential Galois-theoretic background and results.
- ▶ Fix an algebraic ∂ -group (G, s) over an (algebraically closed) differential field K (not necessarily $\mathbb{C}(t)$), and a logarithmic differential equation $\partial ln_G(y) = a$ where $a \in LG(K)$.

• We consider solutions in K^{diff} .

- I will now give the underlying differential Galois-theoretic background and results.
- ▶ Fix an algebraic ∂ -group (G, s) over an (algebraically closed) differential field K (not necessarily $\mathbb{C}(t)$), and a logarithmic differential equation $\partial ln_G(y) = a$ where $a \in LG(K)$.
- We consider solutions in K^{diff} .
- ▶ Two such solutions differ by an element of $G^{\partial}(K^{diff})$ where G^{∂} is the definable group (Manin kernel) $\{g \in G : \partial ln_G(g) = 0\}$ (depending on s).

- I will now give the underlying differential Galois-theoretic background and results.
- ▶ Fix an algebraic ∂ -group (G, s) over an (algebraically closed) differential field K (not necessarily $\mathbb{C}(t)$), and a logarithmic differential equation $\partial ln_G(y) = a$ where $a \in LG(K)$.
- We consider solutions in K^{diff} .
- ► Two such solutions differ by an element of $G^{\partial}(K^{diff})$ where G^{∂} is the definable group (Manin kernel) $\{g \in G : \partial ln_G(g) = 0\}$ (depending on s).
- So in so far as transcendence/Galois theory issues are concerned it is natural to work over K[♯] the differential field generated by K and G[∂](K^{diff}).

Galois theory II

The extension of the Picard-Vessiot/Kolchin differential Galois theory to the nonconstant case is:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Galois theory II

- The extension of the Picard-Vessiot/Kolchin differential Galois theory to the nonconstant case is:
- ▶ Let (G, s) be an algebraic ∂ -group defined over the algebraically closed differential field K and let $\partial ln_G(y) = a$ be a logarithmic differential equation over K, y any solution in K^{diff} and $L = K^{\sharp}(y)$. Then $Aut_{\partial}(L/K^{\sharp})$ has naturally the structure of $H^{\partial}(K^{diff}) = H^{\partial}(K^{\sharp})$ for some algebraic ∂ -subgroup H of (G, s) defined over K^{\sharp} . Moreover $tr.deg(K^{\sharp}(y)/K^{\sharp}) = dim(H)$ and in fact a generator y_1 for Lover K^{\sharp} can be chosen such that $y \in H$ and $\partial ln_H(y_1) = b$ for some $b \in LH(K^{\sharp})$.

Galois theory II

- The extension of the Picard-Vessiot/Kolchin differential Galois theory to the nonconstant case is:
- ▶ Let (G, s) be an algebraic ∂ -group defined over the algebraically closed differential field K and let $\partial ln_G(y) = a$ be a logarithmic differential equation over K, y any solution in K^{diff} and $L = K^{\sharp}(y)$. Then $Aut_{\partial}(L/K^{\sharp})$ has naturally the structure of $H^{\partial}(K^{diff}) = H^{\partial}(K^{\sharp})$ for some algebraic ∂ -subgroup H of (G, s) defined over K^{\sharp} . Moreover $tr.deg(K^{\sharp}(y)/K^{\sharp}) = dim(H)$ and in fact a generator y_1 for Lover K^{\sharp} can be chosen such that $y \in H$ and $\partial ln_H(y_1) = b$ for some $b \in LH(K^{\sharp})$.
- On of our main Galois theoretic results is that in suitable contexts the Galois data are all defined over K. It is a "Galois descent" argument, as Bertrand puts it.

So the first Galois descent result, possibly of independent interest, is:

Theorem 0.1

Let *B* be a semi-abelian variety over an algebraically closed differential field *K*. Let $G = \tilde{B}$ equipped with its unique ∂ -group structure, and let $\partial ln_{\tilde{B}}(-) = a$ be a log-differential equation over *K*. Let *y* be a solution in $G(K^{diff})$ Then $tr.deg(K^{\sharp}(y)/K^{\sharp})$ is the dimension of the smallest algebraic ∂ -subgroup *H* of *G*, defined over *K*, such that $a \in LH + \partial ln_G(G(K))$. Equivalently the smallest such *H* such that $y \in H + G(K) + G^{\partial}(K^{diff})$. Moreover $H^{\partial}(K^{diff})$ is the Galois group of $K^{\sharp}(y)$ over K^{\sharp} .

Galois theory IV

The second Galois descent result is due to Bertrand and concerns only abelian varieties, but the logarithmic rather than exponential side of Ax-Schanuel.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Galois theory IV

- The second Galois descent result is due to Bertrand and concerns only abelian varieties, but the logarithmic rather than exponential side of Ax-Schanuel.
- So A is an abelian variety over an algebraically closed differential field K, Ã its universal vectorial extension. We fix y ∈ Ã(K), and let x be a solution of ∂_{LÃ}(x) = y in K^{diff}.

- The second Galois descent result is due to Bertrand and concerns only abelian varieties, but the logarithmic rather than exponential side of Ax-Schanuel.
- So A is an abelian variety over an algebraically closed differential field K, Ã its universal vectorial extension. We fix y ∈ Ã(K), and let x be a solution of ∂_{LÃ}(x) = y in K^{diff}.
- ▶ We now let K^{\sharp} denote the differential field over K generated by $(L\tilde{A})^{\partial}$ the solution set of $\partial_{L\tilde{A}}(-) = 0$ in K^{diff} . Let A_0 be the $C(\mathcal{K})$ -trace of A and \bar{y} the image of y in A.

- The second Galois descent result is due to Bertrand and concerns only abelian varieties, but the logarithmic rather than exponential side of Ax-Schanuel.
- So A is an abelian variety over an algebraically closed differential field K, Ã its universal vectorial extension. We fix y ∈ Ã(K), and let x be a solution of ∂_{LÃ}(x) = y in K^{diff}.
- We now let K[♯] denote the differential field over K generated by (LÃ)[∂] the solution set of ∂_{LÃ}(−) = 0 in K^{diff}. Let A₀ be the C(K)-trace of A and ȳ the image of y in A.

Theorem 0.2

Let B be the smallest abelian subvariety of A such that some multiple of \bar{y} is in $B + A_0(\mathcal{C}(K))$. Then the (differential) Galois group of $K^{\sharp}(x)$ over K^{\sharp} is $L\tilde{B}^{\partial}(K^{diff})$.

Another ingredient is a strengthening by Chai of the "differential-arithmetic" theorem of the kernel.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Another ingredient is a strengthening by Chai of the "differential-arithmetic" theorem of the kernel.
- Here A is an abelian variety over $K = \mathbb{C}(t)^{alg}$, of \mathbb{C} -trace 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Another ingredient is a strengthening by Chai of the "differential-arithmetic" theorem of the kernel.
- Here A is an abelian variety over $K = \mathbb{C}(t)^{alg}$, of \mathbb{C} -trace 0.
- As before we have 1 → W_A → à → A → 1. Let G be any quotient of à by a unipotent (contained in W_A) algebraic ∂ subgroup and let W_G be the unipotent part of G.
- ► The Manin-Coleman part of the theorem below is the case when G = Ã.

(日) (同) (三) (三) (三) (○) (○)

- Another ingredient is a strengthening by Chai of the "differential-arithmetic" theorem of the kernel.
- Here A is an abelian variety over $K = \mathbb{C}(t)^{alg}$, of \mathbb{C} -trace 0.
- As before we have 1 → W_A → à → A → 1. Let G be any quotient of à by a unipotent (contained in W_A) algebraic ∂ subgroup and let W_G be the unipotent part of G.
- ► The Manin-Coleman part of the theorem below is the case when G = A.

Theorem 0.3

Suppose $y \in G(K)$, $x \in LG(K)$ be such that $\partial ln_G(y) = \partial_{LG}(x)$. Then the projection of y to A is a torsion point, and in particular $x \in LW_G$ (which can be identified with W_G).

I will give a brief description of how the results follow from the above Galois descent theorems. We start with strengthened nonconstant Ax-Lindemann.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- I will give a brief description of how the results follow from the above Galois descent theorems. We start with strengthened nonconstant Ax-Lindemann.
- ▶ So $K = \mathbb{C}(t)^{alg}$ and G a semiabelian variety over K, namely we have an exact sequence $1 \to T \to G \to A \to 1$ where T is an algebraic torus and A an abelian variety, all over K.

- I will give a brief description of how the results follow from the above Galois descent theorems. We start with strengthened nonconstant Ax-Lindemann.
- ▶ So $K = \mathbb{C}(t)^{alg}$ and G a semiabelian variety over K, namely we have an exact sequence $1 \to T \to G \to A \to 1$ where T is an algebraic torus and A an abelian variety, all over K.
- ▶ By the semiconstant part G₀ of G we mean the preimage in G of the constant part A₀ of A.

- I will give a brief description of how the results follow from the above Galois descent theorems. We start with strengthened nonconstant Ax-Lindemann.
- ▶ So $K = \mathbb{C}(t)^{alg}$ and G a semiabelian variety over K, namely we have an exact sequence $1 \to T \to G \to A \to 1$ where T is an algebraic torus and A an abelian variety, all over K.
- ▶ By the semiconstant part G₀ of G we mean the preimage in G of the constant part A₀ of A.
- ▶ We make the assumption (HG)₀ which says that that G₀ is constant, i.e. descends to C. (Without it there is a counterexample.)

- I will give a brief description of how the results follow from the above Galois descent theorems. We start with strengthened nonconstant Ax-Lindemann.
- ▶ So $K = \mathbb{C}(t)^{alg}$ and G a semiabelian variety over K, namely we have an exact sequence $1 \to T \to G \to A \to 1$ where T is an algebraic torus and A an abelian variety, all over K.
- ▶ By the semiconstant part G₀ of G we mean the preimage in G of the constant part A₀ of A.
- ▶ We make the assumption (HG)₀ which says that that G₀ is constant, i.e. descends to C. (Without it there is a counterexample.)
- ▶ We let y, x be K^{diff} -rational points of \tilde{G} , $L\tilde{G}$ respectively such that $\partial ln_G(y) = \partial_{L\tilde{G}}(x)$, and let K^{\sharp} be generated by K and the solutions of $\partial ln_{\tilde{G}} = 0$ in K^{diff}

► The desired conclusion is that the projection of y on G is a generic point over K[‡] (so also over K) of an algebraic subgroup H of G (defined over K of course).

- ► The desired conclusion is that the projection of y on G is a generic point over K[#] (so also over K) of an algebraic subgroup H of G (defined over K of course).
- ▶ We prove the version stated in the introduction. Assuming $(HK)_G$: $x \notin LH(K) + LG^{\partial}$ for any algebraic subgroup H of \tilde{G} defined over K. THEN y is a generic point of \tilde{G} over K^{\sharp} .

- ► The desired conclusion is that the projection of y on G is a generic point over K[#] (so also over K) of an algebraic subgroup H of G (defined over K of course).
- ▶ We prove the version stated in the introduction. Assuming $(HK)_G$: $x \notin LH(K) + LG^{\partial}$ for any algebraic subgroup H of \tilde{G} defined over K. THEN y is a generic point of \tilde{G} over K^{\sharp} .

▶ Suppose not. So $tr.deg(K^{\sharp}(y)/K^{\sharp}) < dimG$.

- ► The desired conclusion is that the projection of y on G is a generic point over K[#] (so also over K) of an algebraic subgroup H of G (defined over K of course).
- ▶ We prove the version stated in the introduction. Assuming $(HK)_G$: $x \notin LH(K) + LG^{\partial}$ for any algebraic subgroup H of \tilde{G} defined over K. THEN y is a generic point of \tilde{G} over K^{\sharp} .
- ▶ Suppose not. So $tr.deg(K^{\sharp}(y)/K^{\sharp}) < dimG$.
- ▶ By Theorem 0.1 (Galois descent), $y = y_1 + g + g^{\sharp}$ where $y_1 \in H$, $g \in G(K)$, $g^{\sharp} \in G^{\partial}(K^{diff})$, where H is a proper algebraic ∂ -subgroup G such that $H^{\partial}(K^{diff})$ is the relevant Galois group.

- ► The desired conclusion is that the projection of y on G is a generic point over K[#] (so also over K) of an algebraic subgroup H of G (defined over K of course).
- ▶ We prove the version stated in the introduction. Assuming $(HK)_G$: $x \notin LH(K) + LG^{\partial}$ for any algebraic subgroup H of \tilde{G} defined over K. THEN y is a generic point of \tilde{G} over K^{\sharp} .
- ▶ Suppose not. So $tr.deg(K^{\sharp}(y)/K^{\sharp}) < dimG$.
- ▶ By Theorem 0.1 (Galois descent), $y = y_1 + g + g^{\sharp}$ where $y_1 \in H$, $g \in G(K)$, $g^{\sharp} \in G^{\partial}(K^{diff})$, where H is a proper algebraic ∂ -subgroup G such that $H^{\partial}(K^{diff})$ is the relevant Galois group.

• Let
$$y_2 = y_1 + g$$
. Then $\partial ln_G(y_2) = a$ too.

▶ Then, by the Galois theory, $y_2/H \in (G/H)(K)$, $x/LH \in L(G/H)(K)$, we still have that $\partial ln(y_2/H) = \partial (x/LH)$ (with relevant subscripts), and using $(HG)_0$, the HK hypothesis is preserved in the quotient.

- ▶ Then, by the Galois theory, $y_2/H \in (G/H)(K)$, $x/LH \in L(G/H)(K)$, we still have that $\partial ln(y_2/H) = \partial (x/LH)$ (with relevant subscripts), and using $(HG)_0$, the HK hypothesis is preserved in the quotient.
- ► A possible further quotienting, plus the truth of Ax-Lindemann in the constant case and Theorem 0.3 yields a contradiction.

- ▶ Then, by the Galois theory, $y_2/H \in (G/H)(K)$, $x/LH \in L(G/H)(K)$, we still have that $\partial ln(y_2/H) = \partial (x/LH)$ (with relevant subscripts), and using $(HG)_0$, the HK hypothesis is preserved in the quotient.
- ► A possible further quotienting, plus the truth of Ax-Lindemann in the constant case and Theorem 0.3 yields a contradiction.
- I now touch on the result concerning the Manin map with no details:

- ▶ Then, by the Galois theory, $y_2/H \in (G/H)(K)$, $x/LH \in L(G/H)(K)$, we still have that $\partial ln(y_2/H) = \partial (x/LH)$ (with relevant subscripts), and using $(HG)_0$, the HK hypothesis is preserved in the quotient.
- ► A possible further quotienting, plus the truth of Ax-Lindemann in the constant case and Theorem 0.3 yields a contradiction.
- I now touch on the result concerning the Manin map with no details:
- ▶ Let A be simple traceless over $K = \mathbb{C}(t)^{alg}$. Then the statement: if $y_1, ..., y_n \in A(K^{alg})$ are linearly independent over End(A) then $\mu_A(y_1), ..., \mu_A(y_n)$ are linearly independent over \mathbb{C} ,

follows fairly quickly from Theorem 0.2.

When W_A contains no algebraic ∂ subgroup of A, then we obtain with additional work the stronger statement: if y₁,.., y_n ∈ A(K^{alg}) are linearly independent over Z then μ_A(y₁),.., μ_A(y_n) are linearly independent over C.

- When W_A contains no algebraic ∂ subgroup of A, then we obtain with additional work the stronger statement: if y₁,.., y_n ∈ A(K^{alg}) are linearly independent over Z then μ_A(y₁),.., μ_A(y_n) are linearly independent over C.
- ► And an example (mentioned in our Lindemann-Weierstrass paper) due to Yves André of a simple C-trace 0 abelian variety over K such that A DOES have have a nontrivial unipotent ∂ subgroup, yields a counterexample to the stronger statement.

(日) (同) (三) (三) (三) (○) (○)