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Introduction I

I This is a report on some joint works with Daniel Bertrand
with common themes.

I The first is a strengthening of our Ax-Lindemann theorem for
nonconstant semiabelian varieties, but with a differential
Galois-theoretic proof, avoiding the socle theorem (CBP ):

I Suppose B is a semiabelian variety over K = C(t)alg with
“semiconstant part ” B0 and assume B0 is over C. Let
x ∈ LB(K)and let y = exp(x) ∈ B. Then y is a generic
point over K] (so also over K) of an algebraic subgroup of G,
necessarily defined over K. Explain.

I Equivalently, assuming that x /∈ L(H) +B0(C) for any proper
algebraic subgroup H of B, then
tr.deg(K](y)/K]) = dim(B).

I Here K] is the differential field generated over K by solutions
of µB(−) = 0 in Kdiff where µB is the Manin map, and
replacing K by K] is the strengthening.
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Introduction II

I The relevance of µB is that y = exp(x) implies
µB(y) ∈ LB(K). This Manin homomorphism will be
discussed later.

I In fact in trying to formulate an Ax-Schanuel statement in the
nonconstant case, namely estimating the transcendence
degree of (x, exp(x)) for any x ∈ LB (with x not necessarily
over K or Kalg) it is natural to work over both ker(µB) and
the relevant field of periods. And estimating transcendence
degrees over the field generated by the periods is crucial in
“Relative Manin-Mumford for semi-abelian surfaces” (BMPZ).

I The second result concerns the Manin homomorphism µA for
A a simple abelian variety over Kalg with C-trace 0. µA is a
certain differential rational homomorphism from A onto a
vector space, discussed in detail later, where we consider
points in an an ambient differentially closed field.

I The “theorem of the kernel” implies that ker(µA)(Kalg) is
precisely the torsion points.
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Introduction III

I Udi asked us whether this can be strengthened to the
statement:

I If y1, .., yn ∈ A(Kalg) are linearly independent over Z then
µA(y1), .., µA(yn) are linearly independent over C (i.e. over
the constants).

I Note that the n = 1 case is the differential algebraic theorem
of the kernel.

I This general statement is true in many cases (such as when A
is an elliptic curve), but an example of Yves André yields a
counterexample (with some work).

I However the following statement, also generalizing the
theorem of the kernel does hold: If y1, .., yn ∈ A(Kalg) are
linearly independent over End(A) then µA(y1), .., µA(yn) are
linearly independent over C, also with a differential
Galois-theoretic proof.
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Algebraic ∂-groups and logarithmic derivatives I

I We start to give some common background to the results
mentioned above.

I We work in a saturated differentially closed field U whose field
of constants C may be assumed to be C.

I The classical logarithmic derivative dlog map on GLn (and
any algebraic subgroup defined over C) is (∂Z)Z−1, a crossed
homomorphism to Mn (the Lie algebra or tangent space at
the identity).

I The Galois theory of linear differential equations concerns the
(differential) field L generated over K by a solution Z in
GLn(Kdiff ) of an equation dlog(Z) = A where A ∈Mn(K)
(K any differential field with algebraically closed field C(K)of
constants).

I Aut∂(L/K) has naturally the form G(C(K)) for an algebraic
subgroup G of GLn over C(K).
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Algebraic ∂-groups and logarithmic derivatives II

I Kolchin generalized this, replacing GLn by any algebraic
group defined over the constants.

I For algebraic groups G not necessarily defined over the
constants, one requires a so-called ∂-group structure on G to
be able to define an analogous logarithmic derivative ∂lnG
from G to its Lie algebra LG.

I A ∂-group structure on G is an extension of the derivation ∂
(on the differential field over which G is defined) to the
structure sheaf of G which respects co-multiplication,
equivalently a rational homomorphic section s : G→ T∂G
from G to a certain shifted tangent bundle of G.

I Then ∂lnG is the (definable) map y → ∂(y) · s(y)−1 ( ·
computed in the algebraic group T∂(G)).
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Algebraic ∂-groups and logarithmic derivatives III

I If B is a semiabelian variety then its “universal vectorial
extension” B̃ (where we have 0→WB → B̃ → B → 0) has a
unique ∂-group structure, as does the quotient of B̃ by an
algebraic ∂-subgroup contained in WB.

I Then ∂lnB̃ induces a (definable) map from B to

LB̃/∂lnB̃(WB) (a C-vector space) which is the differential
algebraic/model-theoretic Manin map µB.

I Differentiating ∂lnB̃ at the identity yields a definable

homomorphism ∂LB̃ from LB̃ to itself (the Gauss-Manin
connection).
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Algebraic ∂-groups and logarithmic derivatives IV

I The Ax-Lindemann theorem mentioned in the introduction is
proved by passing to B̃, lifting x to x̃ ∈ LB̃(Kalg), and y to
ỹ ∈ B̃ such that exp(ỹ) = x̃.

I Then noting that ∂lnB̃(ỹ) = ∂LB̃(x̃), and giving a
differential-Galois-theoretic proof (using also
Manin-Coleman-Chai..) that tr.deg(K](ỹ)/K]) = dim(B̃).

I Now K] is the (algebraic closure if one wishes of the)
differential field generated by K = C(t) and the solutions of
∂lnB̃(−) = 0 in the differential closure Kdiff of K.
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ỹ ∈ B̃ such that exp(ỹ) = x̃.
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Galois theory I

I I will now give the underlying differential Galois-theoretic
background and results.

I Fix an algebraic ∂-group (G, s) over an (algebraically closed)
differential field K (not necessarily C(t)), and a logarithmic
differential equation ∂lnG(y) = a where a ∈ LG(K).

I We consider solutions in Kdiff .

I Two such solutions differ by an element of G∂(Kdiff ) where
G∂ is the definable group (Manin kernel)
{g ∈ G : ∂lnG(g) = 0} (depending on s).

I So in so far as transcendence/Galois theory issues are
concerned it is natural to work over K] the differential field
generated by K and G∂(Kdiff ).
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Galois theory II

I The extension of the Picard-Vessiot/Kolchin differential Galois
theory to the nonconstant case is:

I Let (G, s) be an algebraic ∂-group defined over the
algebraically closed differential field K and let ∂lnG(y) = a be
a logarithmic differential equation over K, y any solution in
Kdiff and L = K](y). Then Aut∂(L/K]) has naturally the
structure of H∂(Kdiff ) = H∂(K]) for some algebraic
∂-subgroup H of (G, s) defined over K]. Moreover
tr.deg(K](y)/K]) = dim(H) and in fact a generator y1 for L
over K] can be chosen such that y ∈ H and ∂lnH(y1) = b for
some b ∈ LH(K]).

I On of our main Galois theoretic results is that in suitable
contexts the Galois data are all defined over K. It is a “Galois
descent” argument, as Bertrand puts it.
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Galois theory III

So the first Galois descent result, possibly of independent interest,
is:

Theorem 0.1
Let B be a semi-abelian variety over an algebraically closed
differential field K. Let G = B̃ equipped with its unique ∂-group
structure, and let ∂lnB̃(−) = a be a log-differential equation over
K. Let y be a solution in G(Kdiff ) Then tr.deg(K](y)/K]) is the
dimension of the smallest algebraic ∂-subgroup H of G, defined
over K, such that a ∈ LH + ∂lnG(G(K)). Equivalently the
smallest such H such that y ∈ H +G(K) +G∂(Kdiff ). Moreover
H∂(Kdiff ) is the Galois group of K](y) over K].



Galois theory IV

I The second Galois descent result is due to Bertrand and
concerns only abelian varieties, but the logarithmic rather
than exponential side of Ax-Schanuel.

I So A is an abelian variety over an algebraically closed
differential field K, Ã its universal vectorial extension. We fix
y ∈ Ã(K), and let x be a solution of ∂LÃ(x) = y in Kdiff .

I We now let K] denote the differential field over K generated
by (LÃ)∂ the solution set of ∂LÃ(−) = 0 in Kdiff . Let A0 be
the C(K)-trace of A and ȳ the image of y in A.

Theorem 0.2
Let B be the smallest abelian subvariety of A such that some
multiple of ȳ is in B +A0(C(K)). Then the (differential) Galois
group of K](x) over K] is LB̃∂(Kdiff ).
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Theorem 0.2
Let B be the smallest abelian subvariety of A such that some
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Manin-Coleman-Chai theorem of the kernel

I Another ingredient is a strengthening by Chai of the
“differential-arithmetic” theorem of the kernel.

I Here A is an abelian variety over K = C(t)alg, of C-trace 0.

I As before we have 1→WA → Ã→ A→ 1. Let G be any
quotient of Ã by a unipotent (contained in WA) algebraic ∂
subgroup and let WG be the unipotent part of G.

I The Manin-Coleman part of the theorem below is the case
when G = Ã.

Theorem 0.3
Suppose y ∈ G(K), x ∈ LG(K) be such that ∂lnG(y) = ∂LG(x).
Then the projection of y to A is a torsion point, and in particular
x ∈ LWG (which can be identified with WG).
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Conclusions I

I I will give a brief description of how the results follow from
the above Galois descent theorems. We start with
strengthened nonconstant Ax-Lindemann.

I So K = C(t)alg and G a semiabelian variety over K, namely
we have an exact sequence 1→ T → G→ A→ 1 where T is
an algebraic torus and A an abelian variety, all over K.

I By the semiconstant part G0 of G we mean the preimage in
G of the constant part A0 of A.

I We make the assumption (HG)0 which says that that G0 is
constant, i.e. descends to C. (Without it there is a
counterexample.)

I We let y, x be Kdiff -rational points of G̃, LG̃ respectively
such that ∂lnG(y) = ∂LG̃(x), and let K] be generated by K
and the solutions of ∂lnG̃ = 0 in Kdiff
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Conclusions II

I The desired conclusion is that the projection of y on G is a
generic point over K] (so also over K) of an algebraic
subgroup H of G (defined over K of course).

I We prove the version stated in the introduction. Assuming
(HK)G: x /∈ LH(K) + LG∂ for any algebraic subgroup H of
G̃ defined over K. THEN y is a generic point of G̃ over K].

I Suppose not. So tr.deg(K](y)/K]) < dimG.

I By Theorem 0.1 (Galois descent), y = y1 + g + g] where
y1 ∈ H, g ∈ G(K), g] ∈ G∂(Kdiff ), where H is a proper
algebraic ∂-subgroup G such that H∂(Kdiff ) is the relevant
Galois group.

I Let y2 = y1 + g. Then ∂lnG(y2) = a too.
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Conclusion III

I Then, by the Galois theory, y2/H ∈ (G/H)(K),
x/LH ∈ L(G/H)(K), we still have that
∂ln(y2/H) = ∂(x/LH) (with relevant subscripts), and using
(HG)0, the HK hypothesis is preserved in the quotient.

I A possible further quotienting, plus the truth of Ax-Lindemann
in the constant case and Theorem 0.3 yields a contradiction.

I I now touch on the result concerning the Manin map with no
details:

I Let A be simple traceless over K = C(t)alg. Then the
statement: if y1, .., yn ∈ A(Kalg) are linearly independent
over End(A) then µA(y1), .., µA(yn) are linearly independent
over C,
follows fairly quickly from Theorem 0.2.
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Conclusion III

I When WA contains no algebraic ∂ subgroup of Ã, then we
obtain with additional work the stronger statement:
if y1, .., yn ∈ A(Kalg) are linearly independent over Z then
µA(y1), .., µA(yn) are linearly independent over C.

I And an example (mentioned in our Lindemann-Weierstrass
paper) due to Yves André of a simple C-trace 0 abelian variety
over K such that Ã DOES have have a nontrivial unipotent ∂
subgroup, yields a counterexample to the stronger statement.
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