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>

This is a report on some joint works with Daniel Bertrand
with common themes.

The first is a strengthening of our Ax-Lindemann theorem for
nonconstant semiabelian varieties, but with a differential
Galois-theoretic proof, avoiding the socle theorem (CBP):
Suppose B is a semiabelian variety over K = C(#)%9 with
“semiconstant part " By and assume By is over C. Let

x € LB(K)and let y = exp(x) € B. Then y is a generic
point over K* (so also over K) of an algebraic subgroup of G,
necessarily defined over K. Explain.

Equivalently, assuming that = ¢ L(H) + By(C) for any proper
algebraic subgroup H of B, then

tr.deg(K*(y)/K*) = dim(B).

Here K* is the differential field generated over K by solutions
of up(—) =0 in K%/ where g is the Manin map, and
replacing K by K" is the strengthening.
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» The relevance of up is that y = exp(z) implies
up(y) € LB(K). This Manin homomorphism will be
discussed later.

> In fact in trying to formulate an Ax-Schanuel statement in the
nonconstant case, namely estimating the transcendence
degree of (z,exp(x)) for any x € LB (with x not necessarily
over K or K®9) it is natural to work over both ker(up) and
the relevant field of periods. And estimating transcendence
degrees over the field generated by the periods is crucial in
“Relative Manin-Mumford for semi-abelian surfaces” (BMPZ).

» The second result concerns the Manin homomorphism w4 for
A a simple abelian variety over K9 with C-trace 0. f14 is a
certain differential rational homomorphism from A onto a
vector space, discussed in detail later, where we consider
points in an an ambient differentially closed field.

» The “theorem of the kernel” implies that ker(pa)(K%9) is
precisely the torsion points.
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> Udi asked us whether this can be strengthened to the
statement:

> If y1,..,yn € A(K%) are linearly independent over Z then
1A(Y1), -, 1A(yn) are linearly independent over C (i.e. over
the constants).

> Note that the n = 1 case is the differential algebraic theorem
of the kernel.

» This general statement is true in many cases (such as when A
is an elliptic curve), but an example of Yves André yields a
counterexample (with some work).

» However the following statement, also generalizing the
theorem of the kernel does hold: If y1,..,y, € A(K9) are
linearly independent over End(A) then pa(y1), .., na(yn) are
linearly independent over C, also with a differential
Galois-theoretic proof.
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» We start to give some common background to the results
mentioned above.

» We work in a saturated differentially closed field &/ whose field
of constants C may be assumed to be C.

» The classical logarithmic derivative dlog map on GL,, (and
any algebraic subgroup defined over C) is (0Z)Z !, a crossed
homomorphism to M,, (the Lie algebra or tangent space at
the identity).

» The Galois theory of linear differential equations concerns the
(differential) field L generated over K by a solution Z in
GL,(K%1T) of an equation dlog(Z) = A where A € M,,(K)
(K any differential field with algebraically closed field C(K)of
constants).

» Auty(L/K) has naturally the form G(C(K)) for an algebraic
subgroup G of GL,, over C(K).



Algebraic 0-groups and logarithmic derivatives ||

» Kolchin generalized this, replacing GL,, by any algebraic
group defined over the constants.



Algebraic 0-groups and logarithmic derivatives ||

» Kolchin generalized this, replacing GL,, by any algebraic
group defined over the constants.

» For algebraic groups G not necessarily defined over the
constants, one requires a so-called d-group structure on G to
be able to define an analogous logarithmic derivative dlng
from G to its Lie algebra LG.



Algebraic 0-groups and logarithmic derivatives ||

» Kolchin generalized this, replacing GL,, by any algebraic
group defined over the constants.

» For algebraic groups G not necessarily defined over the
constants, one requires a so-called d-group structure on G to
be able to define an analogous logarithmic derivative dlng
from G to its Lie algebra LG.

» A O-group structure on G is an extension of the derivation 0
(on the differential field over which G is defined) to the
structure sheaf of G which respects co-multiplication,
equivalently a rational homomorphic section s : G — TG
from G to a certain shifted tangent bundle of G.



Algebraic 0-groups and logarithmic derivatives ||

» Kolchin generalized this, replacing GL,, by any algebraic
group defined over the constants.

» For algebraic groups G not necessarily defined over the
constants, one requires a so-called d-group structure on G to
be able to define an analogous logarithmic derivative dlng
from G to its Lie algebra LG.

» A O-group structure on G is an extension of the derivation 0
(on the differential field over which G is defined) to the
structure sheaf of G which respects co-multiplication,
equivalently a rational homomorphic section s : G — TG
from G to a certain shifted tangent bundle of G.

» Then Oing is the (definable) map y — 9(y) - s(y) ! (-
computed in the algebraic group T5(G)).
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> If B is a semiabelian variety then its “universal vectorial
extension” B (where we have 0 — Wp — B — B — 0) has a
unique d-group structure, as does the quotient of B by an
algebraic d-subgroup contained in Wp.

» Then 0Jin induces a (definable) map from B to
LB/dlng(Wg) (a C-vector space) which is the differential
algebraic/model-theoretic Manin map up.

» Differentiating dinj at the identity yields a definable
homomorphism 9, 5 from LB to itself (the Gauss-Manin
connection).
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» The Ax-Lindemann theorem mentioned in the introduction is
proved by passing to B, lifting z to & € LB(K“?), and y to
g € B such that exp(y) = .

» Then noting that ding(y) = 0, 5(Z), and giving a
differential-Galois-theoretic proof (using also 3
Manin-Coleman-Chai..) that tr.deg(K*(j)/K*) = dim(B).

» Now K* is the (algebraic closure if one wishes of the)
differential field generated by K = C(t¢) and the solutions of
dlnz(—) = 0 in the differential closure K%// of K.
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» Fix an algebraic 0-group (G, s) over an (algebraically closed)
differential field K (not necessarily C(¢)), and a logarithmic
differential equation dlng(y) = a where a € LG(K).

» We consider solutions in K%/f/f,

» Two such solutions differ by an element of G?(K%//) where
G? is the definable group (Manin kernel)
{9 € G : dlnc(g) = 0} (depending on s).

» So in so far as transcendence/Galois theory issues are

concerned it is natural to work over K*! the differential field
generated by K and GO(K%/1).
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» The extension of the Picard-Vessiot/Kolchin differential Galois
theory to the nonconstant case is:

» Let (G, s) be an algebraic 0-group defined over the
algebraically closed differential field K and let ding(y) = a be
a logarithmic differential equation over K, y any solution in
K%'t and L = K*(y). Then Auts(L/K?*) has naturally the
structure of H?(K%ff) = HP(K*") for some algebraic
d-subgroup H of (G, s) defined over K*. Moreover
tr.deg(K*(y)/K*) = dim(H) and in fact a generator y; for L
over K* can be chosen such that y € H and ding(y;) = b for
some b € LH(K?).

» On of our main Galois theoretic results is that in suitable
contexts the Galois data are all defined over K. It is a “Galois
descent” argument, as Bertrand puts it.
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So the first Galois descent result, possibly of independent interest,
is:

Theorem 0.1

Let B be a semi-abelian variety over an algebraically closed
differential field K. Let G = B equipped with its unique 0-group
structure, and let Olnz(—) = a be a log-differential equation over
K. Lety be a solution in G(K%/f) Then tr.deg(K*(y)/K*) is the
dimension of the smallest algebraic 0-subgroup H of GG, defined
over K, such that a € LH + 0lng(G(K)). Equivalently the
smallest such H such that y € H + G(K) + G?(K%/1). Moreover
HO (K411 is the Galois group of K*(y) over K*.
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» The second Galois descent result is due to Bertrand and
concerns only abelian varieties, but the logarithmic rather
than exponential side of Ax-Schanuel.

> So A is an abelian variety over an algebraically closed
differgntial field K, A its universal vectorial extension. We fix
y € A(K), and let x be a solution of 9, ;(z) =y in K%//.

» We now let K* denote the differential field over K generated

by (LA)? the solution set of 0, ;(—) = 0 in K%//. Let Ay be
the C(K)-trace of A and 3 the image of y in A.

Theorem 0.2

Let B be the smallest abelian subvariety of A such that some
multiple of § is in B + Ao(C(K)). Then the (differential) Galois
group of K*(x) over Kt is LBY(K%/T),



Manin-Coleman-Chai theorem of the kernel

» Another ingredient is a strengthening by Chai of the
“differential-arithmetic” theorem of the kernel.



Manin-Coleman-Chai theorem of the kernel

» Another ingredient is a strengthening by Chai of the
“differential-arithmetic” theorem of the kernel.

» Here A is an abelian variety over K = C(t)%9, of C-trace 0.



Manin-Coleman-Chai theorem of the kernel

» Another ingredient is a strengthening by Chai of the
“differential-arithmetic” theorem of the kernel.

» Here A is an abelian variety over K = C(t)%9, of C-trace 0.

» As before we~have 1—- Wy — A— A—1. Let G be any
quotient of A by a unipotent (contained in Wy) algebraic 0
subgroup and let W be the unipotent part of G.

> The Manin-Coleman part of the theorem below is the case
when G = A.



Manin-Coleman-Chai theorem of the kernel

» Another ingredient is a strengthening by Chai of the
“differential-arithmetic” theorem of the kernel.

» Here A is an abelian variety over K = C(t)%9, of C-trace 0.

» As before we~have 1—- Wy — A— A—1. Let G be any
quotient of A by a unipotent (contained in Wy) algebraic 0
subgroup and let W be the unipotent part of G.

> The Manin-Coleman part of the theorem below is the case
when G = A.

Theorem 0.3

Suppose y € G(K), x € LG(K) be such that ding(y) = dra(z).
Then the projection of y to A is a torsion point, and in particular
x € LW¢q (which can be identified with W¢).
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> | will give a brief description of how the results follow from
the above Galois descent theorems. We start with
strengthened nonconstant Ax-Lindemann.

» So K = C(t)% and G a semiabelian variety over K, namely
we have an exact sequence 1 T — G — A — 1 where T is
an algebraic torus and A an abelian variety, all over K.

> By the semiconstant part Gy of G we mean the preimage in
G of the constant part Ay of A.

» We make the assumption (HG)( which says that that Gy is
constant, i.e. descends to C. (Without it there is a
counterexample.)

» We let y, z be K%ff rational points of G, LG respectively

such that lng(y) = 9, 5(x), and let K* be generated by K
and the solutions of dings = 0 in K4rf
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> The desired conclusion is that the projection of y on G is a
generic point over K* (so also over K) of an algebraic
subgroup H of G (defined over K of course).

» We prove the version stated in the introduction. Assuming
(HK)g: © ¢ LH(K) + LG? for any algebraic subgroup H of
G defined over K. THEN Yy is a generic point of G over Kt.

» Suppose not. So tr.deg(K*(y)/K*) < dimG.

» By Theorem 0.1 (Galois descent), y = y1 + g + g* where
y1 € H, g€ G(K), g* € GI(K%¥IF), where H is a proper
algebraic d-subgroup G such that H?(K¥/1) is the relevant
Galois group.

» Let yo = y1 +¢g. Then ding(y2) = a too.
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» Then, by the Galois theory, y2/H € (G/H)(K),
x/LH € L(G/H)(K), we still have that
Oln(y2/H) = 0(x/LH) (with relevant subscripts), and using
(HG)p, the HK hypothesis is preserved in the quotient.

> A possible further quotienting, plus the truth of Ax-Lindemann
in the constant case and Theorem 0.3 yields a contradiction.

> | now touch on the result concerning the Manin map with no
details:

» Let A be simple traceless over K = C(#)%9. Then the
statement: if y1,..,yn € A(K%9) are linearly independent
over End(A) then pa(y1), .., 1a(yn) are linearly independent
over C,
follows fairly quickly from Theorem 0.2.
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Conclusion I

» When Wy contains no algebraic @ subgroup of A, then we
obtain with additional work the stronger statement:
if Y1, ..,y € A(K9) are linearly independent over Z then
wA(y1), -, ha(yn) are linearly independent over C.

» And an example (mentioned in our Lindemann-Weierstrass
paper) due to Yves André of a simple C-trace 0 abelian variety
over K such that A DOES have have a nontrivial unipotent 0
subgroup, yields a counterexample to the stronger statement.



