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Locally definable groups
(also knows as

∨
-definable, Ind-definable)

AssumeM is an ℵ1-saturated structure withM =Meq.

Definition
A locally definable group 〈G, ·〉 is a countable directed union of
definable sets G =

⋃
n Xn ⊆ S, for some fixed sort S, such that for

every m,n, the restriction of multiplication to Xm × Xn and the
restriction of ()−1 to Xm are definable.

A special case: locally definable, definably generated groups
The group G is generated by a definable symmetric subset X ⊆ G.

G =
⋃
n

n-times︷ ︸︸ ︷
X · · ·X
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Examples

• Any countable group G can be realized as a locally definable group
in any structure. If G is a finitely generated group then it is also
definably generated.

• The commutator subgroup [G,G] of a definable group G is a
definably generated subgroup.

In an o-minimal structure, let G be a definable group.

• The universal cover of G is a definably generated group.

• The group of all definable automorphisms of G can be realized as a
locally definable group (if L is countable)
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Some explicit examples

• The subgroup of “finite” elements in a non-archimedean real closed
field is definably generated by the unit interval: G =

⋃
n(−n,n).

• In a non-archimedean abelian group 〈G, <,+〉, let an+1 >> an > 0.
Then the group G =

⋃
n(−an,an) is locally definable but not definably

generated.

• Let T be a two dimensional compact real torus and let X ⊆ T be a
1-dimensional line segment of irrational slope. The group 〈X 〉 is a
definably generated dense subgroup of T (but not dense in a saturated
structure).
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Compatible subsets

Definition
Let G =

⋃
n Xn be a locally definable group. A subset X ⊆ G is called

compatible in G if for every definable Y ⊆ G, the set X ∩Y is definable.
Equivalently, every X ∩ Xn is definable.

Examples
• Inside the group of “finite” elements G =

⋃
n(−n,n) ⊆ (R,+), the

group Z is compatible.

• Inside the group G =
⋃

n(−an,an), an+1 >> an, there are no
compatible 1-generated subgroups.

Kobi Peterzil (University of Haifa) 5



Compatible subsets

Definition
Let G =

⋃
n Xn be a locally definable group. A subset X ⊆ G is called

compatible in G if for every definable Y ⊆ G, the set X ∩Y is definable.
Equivalently, every X ∩ Xn is definable.

Examples
• Inside the group of “finite” elements G =

⋃
n(−n,n) ⊆ (R,+), the

group Z is compatible.

• Inside the group G =
⋃

n(−an,an), an+1 >> an, there are no
compatible 1-generated subgroups.

Kobi Peterzil (University of Haifa) 5



Compatible subsets

Definition
Let G =

⋃
n Xn be a locally definable group. A subset X ⊆ G is called

compatible in G if for every definable Y ⊆ G, the set X ∩Y is definable.
Equivalently, every X ∩ Xn is definable.

Examples
• Inside the group of “finite” elements G =

⋃
n(−n,n) ⊆ (R,+), the

group Z is compatible.

• Inside the group G =
⋃

n(−an,an), an+1 >> an, there are no
compatible 1-generated subgroups.

Kobi Peterzil (University of Haifa) 5



Compatible subsets

Definition
Let G =

⋃
n Xn be a locally definable group. A subset X ⊆ G is called

compatible in G if for every definable Y ⊆ G, the set X ∩Y is definable.
Equivalently, every X ∩ Xn is definable.

Examples
• Inside the group of “finite” elements G =

⋃
n(−n,n) ⊆ (R,+), the

group Z is compatible.

• Inside the group G =
⋃

n(−an,an), an+1 >> an, there are no
compatible 1-generated subgroups.

Kobi Peterzil (University of Haifa) 5



Definable vs. locally definable quotients

Definition
For H ⊆ G locally definable groups, we say that the set G/H is (locally)
definable if there exists a (locally) definable set X and a locally
definable surjective φ : G → X , with φ(g1) = φ(g2) iff g1H = g2H.

Example
〈R, <,+〉 an ordered, divisible, abelian group, a,b > 0. let G be the
subgroup of (R2,+) generated by the rectangle (−a,a)× (−b,b).
• The group G/Za is locally definable,
• The group G/(Za⊕ Zb) is definable.

Fact (in o-minimal structures)
If H ⊆ G is compatible then G/H is locally definable.
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Lattice in locally definable groups

Recall (classical setting)
For G a locally compact group, a lattice in G is a subgroup L ⊆ G
such that (i) L is discrete and (ii) the G-space G/L has finite left
G-invariant Haar measure.

Definition (model theoretic setting)
Let G be locally definable, a lattice in G is a subgroup Γ ⊆ G such that
(i) For every definable X ⊆ G, the set Γ ∩ X is finite (Γ is locally finite)).
(ii) G/Γ is a definable set.

Example
If G is definable then the only lattices are the finite subgroups
(including the trivial group).
If G =

⋃
k∈N(−k , k)n ⊆ Rn then Γ = Zk is a lattice.
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Fact
Let G be locally definable. For Γ ⊆ G locally finite,
G/Γ is definable iff ∃ a definable Y ⊆ G such that Γ · Y = G.

The set Y is “a fundamental set” for Γ.

Proof
⇒:
If φ : G → X is locally definable with X definable and Γ = kerφ, then by
compactness there exists a definable Y ⊆ G with φ(Y ) = X . Since
kerφ = Γ, we have Γ · Y = G.
⇐:
Assume Γ · Y = G. The group Γ is locally finite so Y−1Y ∩ Γ is finite.
⇒ the relation “y1Γ = y2Γ′′ is definable for y1, y2 ∈ Y .
⇒ the set X = Y/Γ is definable, and equals G/Γ.
⇒ the natural quotient map φ : G → X is locally definable.

Kobi Peterzil (University of Haifa) 8
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From now onM is o-minimal (See Baro-Otero on the
topology of locally definable spaces)

Lattices are finitely generated
If G is connected (no clopen compatible subset) and Γ is a lattice in G
then Γ is a finitely generated group.

Proof
Let Y ⊆ G be definable fundamental set, Γ · Y = G. The set Y has
finitely many “neighbors”. Namely, the following set is finite:

A = {γ ∈ Γ : γY ∩ Y 6= ∅} = (Y )(Y )−1 ∩ Γ

W.l.o, e ∈ Y . We now show that A generates Γ:
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Still in the o-minimal setting

We can replace locally finite with compatible, 0-dimensional.

Main Question
Which locally definable groups contain a lattice?

Classical setting
(Borel) Every connected semisimple Lie group contains a lattice.

E.g. SL(2,Z) is a lattice in SL(2,R) and the quotient is S3− trefoil knot.

But the solvable group {
(

a b
0 a−1

)
: a 6= 0,b ∈ R} does not contain a

lattice.

O-minimal setting, an immediate obstacle
The group

⋃
n(−an,an) ⊆ (R,+), an+1 >> an, does not contain a

lattice.
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Main Question

A necessary condition
If G is a locally definable and connected (no compatible clopen subset
with respect to the group topology) and G contains a lattice then it must
be definably generated.

Modified Question
Which connected definably generated groups contain a lattice?
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Lattices and generic sets

Definition
A definable set Y ⊆ G is left generic in G if boundedly many left
translates of Y cover G. Equivalently, every definable set in G can be
covered by finitely many left translates of Y .

Lattice⇒ generic set
If G contains a lattice then it contains a definable fundamental set Y ,
Γ · Y = G. So G contains a definable generic set.

Is the converse also true?
Does the existence of a generic set in G imply the existence of lattice?

Kobi Peterzil (University of Haifa) 12
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Abelian groups

The last question has a positive answer in the abelian case.

Theorem (Elefetheriou-P)
Assume that G is connected, definably generated and abelian. If G
contains a definable generic set then it contains a lattice, isomorphic to
Zk with k 6 dimG.

About the proof
If G contains a generic set then there exists a minimal type-definable
normal subgroup of bounded index G00.
The group G/G00, with the Logic topology, is a connected real abelian
Lie group of dimension at most dimG, so ∼= T× Rk .
If G/G00 = T then G is already definable.
Otherwise, Rk contains a standard lattice Λ =

⊕k
i=1 Zλi . If

γ1, . . . , γk ∈ G are preimages of the λi ’s then
⊕

Zγi is a lattice in G.
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Definably generated groups and generic sets

Conjecture
Every connected, definably generated (abelian) group contains a
definable generic set.

Note
• A definably generated G contains a generic set if and only if it has a
definable generating “approximate subgroup”. i.e. a symmetric set Y
such that YY ⊆ F · Y for some finite F .
• Choosing a generating Y with dim Y = dimG is not enough to ensure
that it is generic.

Kobi Peterzil (University of Haifa) 14
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The rank of a lattice

As we saw, if an abelian group G contains a lattice then it can be
chosen to be ∼= Zk , with k 6 dimG. Here we have a much stronger
result:

Theorem (Berarucci-Edmundo-Mamino)
If G is a connected, locally definable (not necessarily definably
generated!) abelian group and Γ ⊆ G is compatible and 0-dimensional
then rank(Γ) 6 dimG.
It follows that for every n, the n-torsion group G[n] is isomorphic to
(Z/nZ)s, for s 6 dimG.

The proof uses algebraic topology for locally definable groups.
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Equivalences of the conjecture for abelian groups

Summarizing the results:

Theorem (EP)
Let G be a connected, definably generated abelian group.
The following are equivalent:

1. G contains a lattice.
2. G contains a definable generic set.
3. The group G00 exists.

By the result of B-E-M, in order to prove that the above are all true, it is
enough to prove:

Let G be connected, definably generated, abelian. Then either G is
definable or there exists g ∈ G such that 〈g〉 is infinite and compatible
in G.
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A simple case: Subgroups of (Rn,+)

Theorem (E-P)
Let R be a real closed field. If G is a definably generated subgroup of
(Rn,+), definable in an o-minimal expansion of R, then G contains a
lattice, and all the above properties hold.

The main tool is the following connection to convexity:

Main lemma
Let X ⊆ Rn be a definable symmetric set containing 0. Then there is
an n such that

n times︷ ︸︸ ︷
X + · · ·+ X

contains the R-convex hull of X .
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Lattices, divisibility and convexity

So far we left out another open question about locally definable groups:
Recall: Every abelian, connected definable group in an o-minimal
structure is a divisible group.

Question
Is every connected, locally definable abelian group necessarily
divisible? (Conjecture: YES)

Theorem (B-E-M)
Let G be a connected, definably generated abelian group. Then G
contains a lattice if and only if:
(i) G is divisible, and
(ii) for every definable X ⊆ G there exists a definable Y ⊆ G, such that
Y contains the “G-convex hull of X ”.

Kobi Peterzil (University of Haifa) 18
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