Locally definable groups and lattices

Kobi Peterzil (Based on work (with, of) Eleftheriou, work of Berarducci-Edmundo-Mamino)

Department of Mathematics University of Haifa

Ravello 2013

Assume \mathcal{M} is an \aleph_1 -saturated structure with $\mathcal{M} = \mathcal{M}^{eq}$.

Definition

A locally definable group $\langle \mathcal{G}, \cdot \rangle$ is a countable directed union of definable sets $\mathcal{G} = \bigcup_n X_n \subseteq S$, for some fixed sort S, such that for every m, n, the restriction of multiplication to $X_m \times X_n$ and the restriction of ()⁻¹ to X_m are definable.

A special case: locally definable

The group \mathcal{G} is generated by a definable symmetric subset $X \subseteq \mathcal{G}$.

 $\mathcal{G} = \bigcup_{n} \overbrace{X \cdots X}^{n-\text{times}}$

Assume \mathcal{M} is an \aleph_1 -saturated structure with $\mathcal{M} = \mathcal{M}^{eq}$.

Definition

A locally definable group $\langle \mathcal{G}, \cdot \rangle$ is a countable directed union of definable sets $\mathcal{G} = \bigcup_n X_n \subseteq S$, for some fixed sort S, such that for every m, n, the restriction of multiplication to $X_m \times X_n$ and the restriction of ()⁻¹ to X_m are definable.

A special case: locally definable

The group \mathcal{G} is generated by a definable symmetric subset $X \subseteq \mathcal{G}$.

 $\mathcal{G} = \bigcup_{n} \overset{n-\text{times}}{X \cdots X}$

Assume \mathcal{M} is an \aleph_1 -saturated structure with $\mathcal{M} = \mathcal{M}^{eq}$.

Definition

A locally definable group $\langle \mathcal{G}, \cdot \rangle$ is a countable directed union of definable sets $\mathcal{G} = \bigcup_n X_n \subseteq S$, for some fixed sort S, such that for every m, n, the restriction of multiplication to $X_m \times X_n$ and the restriction of ()⁻¹ to X_m are definable.

A special case: locally definable, *definably generated groups*

The group \mathcal{G} is generated by a definable symmetric subset $X \subseteq \mathcal{G}$.

$$\mathcal{G} = \bigcup_{n}^{n-\text{times}} \overline{X \cdots X}$$

Assume \mathcal{M} is an \aleph_1 -saturated structure with $\mathcal{M} = \mathcal{M}^{eq}$.

Definition

A locally definable group $\langle \mathcal{G}, \cdot \rangle$ is a countable directed union of definable sets $\mathcal{G} = \bigcup_n X_n \subseteq S$, for some fixed sort S, such that for every m, n, the restriction of multiplication to $X_m \times X_n$ and the restriction of ()⁻¹ to X_m are definable.

A special case: locally definable,

The group \mathcal{G} is generated by a definable symmetric subset $X \subseteq \mathcal{G}$.

 $\mathcal{G} = \bigcup_{n}^{n-\text{times}} \overline{X \cdots X}$

Assume \mathcal{M} is an \aleph_1 -saturated structure with $\mathcal{M} = \mathcal{M}^{eq}$.

Definition

A locally definable group $\langle \mathcal{G}, \cdot \rangle$ is a countable directed union of definable sets $\mathcal{G} = \bigcup_n X_n \subseteq S$, for some fixed sort S, such that for every m, n, the restriction of multiplication to $X_m \times X_n$ and the restriction of ()⁻¹ to X_m are definable.

A special case: locally definable, *definably generated groups*

The group \mathcal{G} is generated by a definable symmetric subset $X \subseteq \mathcal{G}$.

$$\mathcal{G} = \bigcup_{n} \overset{n-\text{times}}{X \cdots X}$$

• The commutator subgroup [G, G] of a definable group G is a definably generated subgroup.

In an o-minimal structure, let G be a definable group.

- The universal cover of *G* is a definably generated group.
- The group of all definable automorphisms of G can be realized as a locally definable group (if \mathcal{L} is countable)

• The commutator subgroup [G, G] of a definable group G is a definably generated subgroup.

In an o-minimal structure, let G be a definable group.

• The universal cover of *G* is a definably generated group.

• The group of all definable automorphisms of G can be realized as a locally definable group (if $\mathcal L$ is countable)

• The commutator subgroup [G, G] of a definable group G is a definably generated subgroup.

In an o-minimal structure, let *G* be a definable group.

• The universal cover of *G* is a definably generated group.

• The group of all definable automorphisms of G can be realized as a locally definable group (if \mathcal{L} is countable)

• The commutator subgroup [G, G] of a definable group G is a definably generated subgroup.

In an o-minimal structure, let G be a definable group.

• The universal cover of *G* is a definably generated group.

• The group of all definable automorphisms of G can be realized as a locally definable group (if \mathcal{L} is countable)

• The commutator subgroup [G, G] of a definable group G is a definably generated subgroup.

In an o-minimal structure, let G be a definable group.

- The universal cover of *G* is a definably generated group.
- The group of all definable automorphisms of G can be realized as a locally definable group (if \mathcal{L} is countable)

• The subgroup of "finite" elements in a non-archimedean real closed field is definably generated by the unit interval: $\mathcal{G} = \bigcup_{n} (-n, n)$.

• In a non-archimedean abelian group $\langle G, <, + \rangle$, let $a_{n+1} >> a_n > 0$. Then the group $\mathcal{G} = \bigcup_n (-a_n, a_n)$ is locally definable but **not** definably generated.

• Let T be a two dimensional compact real torus and let $X \subseteq T$ be a 1-dimensional line segment of irrational slope. The group $\langle X \rangle$ is a definably generated dense subgroup of T (but not dense in a saturated structure).

• The subgroup of "finite" elements in a non-archimedean real closed field is definably generated by the unit interval: $\mathcal{G} = \bigcup_{n} (-n, n)$.

• In a non-archimedean abelian group $\langle G, <, + \rangle$, let $a_{n+1} >> a_n > 0$. Then the group $\mathcal{G} = \bigcup_n (-a_n, a_n)$ is locally definable but **not** definably generated.

• Let T be a two dimensional compact real torus and let $X \subseteq T$ be a 1-dimensional line segment of irrational slope. The group $\langle X \rangle$ is a definably generated dense subgroup of T (but not dense in a saturated structure).

• The subgroup of "finite" elements in a non-archimedean real closed field is definably generated by the unit interval: $\mathcal{G} = \bigcup_{n} (-n, n)$.

• In a non-archimedean abelian group $\langle G, <, + \rangle$, let $a_{n+1} >> a_n > 0$. Then the group $\mathcal{G} = \bigcup_n (-a_n, a_n)$ is locally definable but **not** definably generated.

• Let *T* be a two dimensional compact real torus and let $X \subseteq T$ be a 1-dimensional line segment of irrational slope. The group $\langle X \rangle$ is a definably generated dense subgroup of *T* (but not dense in a saturated structure).

Let $\mathcal{G} = \bigcup_n X_n$ be a locally definable group. A subset $\mathcal{X} \subseteq \mathcal{G}$ is called *compatible in* \mathcal{G} if for every definable $Y \subseteq G$, the set $\mathcal{X} \cap Y$ is definable. Equivalently, every $\mathcal{X} \cap X_n$ is definable.

Examples

• Inside the group of "finite" elements $\mathcal{G} = \bigcup_n (-n, n) \subseteq (R, +)$, the group \mathbb{Z} is compatible.

Let $\mathcal{G} = \bigcup_n X_n$ be a locally definable group. A subset $\mathcal{X} \subseteq \mathcal{G}$ is called *compatible in* \mathcal{G} if for every definable $Y \subseteq G$, the set $\mathcal{X} \cap Y$ is definable. Equivalently, every $\mathcal{X} \cap X_n$ is definable.

Examples

• Inside the group of "finite" elements $\mathcal{G} = \bigcup_n (-n, n) \subseteq (R, +)$, the group \mathbb{Z} is compatible.

Let $\mathcal{G} = \bigcup_n X_n$ be a locally definable group. A subset $\mathcal{X} \subseteq \mathcal{G}$ is called *compatible in* \mathcal{G} if for every definable $Y \subseteq G$, the set $\mathcal{X} \cap Y$ is definable. Equivalently, every $\mathcal{X} \cap X_n$ is definable.

Examples

• Inside the group of "finite" elements $\mathcal{G} = \bigcup_n (-n, n) \subseteq (R, +)$, the group \mathbb{Z} is compatible.

Let $\mathcal{G} = \bigcup_n X_n$ be a locally definable group. A subset $\mathcal{X} \subseteq \mathcal{G}$ is called *compatible in* \mathcal{G} if for every definable $Y \subseteq G$, the set $\mathcal{X} \cap Y$ is definable. Equivalently, every $\mathcal{X} \cap X_n$ is definable.

Examples

• Inside the group of "finite" elements $\mathcal{G} = \bigcup_n (-n, n) \subseteq (R, +)$, the group \mathbb{Z} is compatible.

For $\mathcal{H} \subseteq \mathcal{G}$ locally definable groups, we say that the set \mathcal{G}/\mathcal{H} is (locally) **definable** if there exists a (locally) definable set *X* and a locally definable surjective $\phi : \mathcal{G} \to X$, with $\phi(g_1) = \phi(g_2)$ iff $g_1 \mathcal{H} = g_2 \mathcal{H}$.

Example

 $\langle R, <, + \rangle$ an ordered, divisible, abelian group, a, b > 0. let \mathcal{G} be the subgroup of $(\mathbb{R}^2, +)$ generated by the rectangle $(-a, a) \times (-b, b)$. • The group $\mathcal{G}/\mathbb{Z}a$ is locally definable, • The group $\mathcal{G}/(\mathbb{Z}a \oplus \mathbb{Z}b)$ is definable.

Fact (in o-minimal structures)

For $\mathcal{H} \subseteq \mathcal{G}$ locally definable groups, we say that the set \mathcal{G}/\mathcal{H} is (locally) **definable** if there exists a (locally) definable set *X* and a locally definable surjective $\phi : \mathcal{G} \to X$, with $\phi(g_1) = \phi(g_2)$ iff $g_1 \mathcal{H} = g_2 \mathcal{H}$.

Example

⟨*R*, <, +⟩ an ordered, divisible, abelian group, *a*, *b* > 0. let *G* be the subgroup of (*R*², +) generated by the rectangle (-*a*, *a*) × (-*b*, *b*).
The group *G*/ℤ*a* is locally definable,
The group *G*/(ℤ*a* ⊕ ℤ*b*) is definable.

Fact (in o-minimal structures)

For $\mathcal{H} \subseteq \mathcal{G}$ locally definable groups, we say that the set \mathcal{G}/\mathcal{H} is (locally) **definable** if there exists a (locally) definable set *X* and a locally definable surjective $\phi : \mathcal{G} \to X$, with $\phi(g_1) = \phi(g_2)$ iff $g_1 \mathcal{H} = g_2 \mathcal{H}$.

Example

 $\langle R, <, + \rangle$ an ordered, divisible, abelian group, a, b > 0. let \mathcal{G} be the subgroup of $(R^2, +)$ generated by the rectangle $(-a, a) \times (-b, b)$. • The group $\mathcal{G}/\mathbb{Z}a$ is locally definable, • The group $\mathcal{G}/(\mathbb{Z}a \oplus \mathbb{Z}b)$ is definable.

Fact (in o-minimal structures)

For $\mathcal{H} \subseteq \mathcal{G}$ locally definable groups, we say that the set \mathcal{G}/\mathcal{H} is (locally) **definable** if there exists a (locally) definable set *X* and a locally definable surjective $\phi : \mathcal{G} \to X$, with $\phi(g_1) = \phi(g_2)$ iff $g_1 \mathcal{H} = g_2 \mathcal{H}$.

Example

 $\langle R, <, + \rangle$ an ordered, divisible, abelian group, a, b > 0. let \mathcal{G} be the subgroup of $(R^2, +)$ generated by the rectangle $(-a, a) \times (-b, b)$. • The group $\mathcal{G}/\mathbb{Z}a$ is locally definable,

• The group $\mathcal{G}/(\mathbb{Z} a \oplus \mathbb{Z} b)$ is definable.

Fact (in o-minimal structures)

For $\mathcal{H} \subseteq \mathcal{G}$ locally definable groups, we say that the set \mathcal{G}/\mathcal{H} is (locally) **definable** if there exists a (locally) definable set *X* and a locally definable surjective $\phi : \mathcal{G} \to X$, with $\phi(g_1) = \phi(g_2)$ iff $g_1 \mathcal{H} = g_2 \mathcal{H}$.

Example

 $\langle R, <, + \rangle$ an ordered, divisible, abelian group, a, b > 0. let \mathcal{G} be the subgroup of $(\mathbb{R}^2, +)$ generated by the rectangle $(-a, a) \times (-b, b)$.

- The group $\mathcal{G}/\mathbb{Z}a$ is locally definable,
- The group $\mathcal{G}/(\mathbb{Z}a \oplus \mathbb{Z}b)$ is definable.

Fact (in o-minimal structures)

For $\mathcal{H} \subseteq \mathcal{G}$ locally definable groups, we say that the set \mathcal{G}/\mathcal{H} is (locally) **definable** if there exists a (locally) definable set *X* and a locally definable surjective $\phi : \mathcal{G} \to X$, with $\phi(g_1) = \phi(g_2)$ iff $g_1 \mathcal{H} = g_2 \mathcal{H}$.

Example

 $\langle R, <, + \rangle$ an ordered, divisible, abelian group, a, b > 0. let \mathcal{G} be the subgroup of $(\mathbb{R}^2, +)$ generated by the rectangle $(-a, a) \times (-b, b)$.

- The group $\mathcal{G}/\mathbb{Z}a$ is locally definable,
- The group $\mathcal{G}/(\mathbb{Z}a \oplus \mathbb{Z}b)$ is definable.

Fact (in o-minimal structures)

Recall (

For *G* a locally compact group, **a lattice in** *G* is a subgroup $L \subseteq G$ such that (i) *L* is discrete and (ii) the *G*-space G/L has **finite** left *G*-invariant Haar measure.

Definition (model theoretic setting)

Let \mathcal{G} be locally definable, **a lattice in** \mathcal{G} is a subgroup $\Gamma \subseteq \mathcal{G}$ such that (i) For every definable $X \subseteq \mathcal{G}$, the set $\Gamma \cap X$ is finite (Γ is locally finite)). (ii) \mathcal{G}/Γ is a definable set.

Example

For *G* a locally compact group, **a lattice in** *G* is a subgroup $L \subseteq G$ such that (i) *L* is discrete and (ii) the *G*-space G/L has **finite** left *G*-invariant Haar measure.

Definition (model theoretic setting)

Let \mathcal{G} be locally definable, **a lattice in** \mathcal{G} is a subgroup $\Gamma \subseteq \mathcal{G}$ such that (i) For every definable $X \subseteq \mathcal{G}$, the set $\Gamma \cap X$ is finite (Γ is locally finite)). (ii) \mathcal{G}/Γ is a definable set.

Example

For *G* a locally compact group, **a lattice in** *G* is a subgroup $L \subseteq G$ such that (i) *L* is discrete and (ii) the *G*-space G/L has **finite** left *G*-invariant Haar measure.

Definition (model theoretic setting)

Let \mathcal{G} be locally definable, a lattice in \mathcal{G} is a subgroup $\Gamma \subseteq \mathcal{G}$ such that (i) For every definable $X \subseteq \mathcal{G}$, the set $\Gamma \cap X$ is finite (Γ is locally-finite)). (ii) \mathcal{G}/Γ is a definable set.

Example

For *G* a locally compact group, **a lattice in** *G* is a subgroup $L \subseteq G$ such that (i) *L* is discrete and (ii) the *G*-space G/L has **finite** left *G*-invariant Haar measure.

Definition (model theoretic setting)

Let \mathcal{G} be locally definable, **a lattice in** \mathcal{G} is a subgroup $\Gamma \subseteq \mathcal{G}$ such that (i) For every definable $X \subseteq \mathcal{G}$, the set $\Gamma \cap X$ is finite (Γ is locally finite)). (ii) \mathcal{G}/Γ is a definable set.

Example

For *G* a locally compact group, **a lattice in** *G* is a subgroup $L \subseteq G$ such that (i) *L* is discrete and (ii) the *G*-space G/L has **finite** left *G*-invariant Haar measure.

Definition (model theoretic setting)

Let \mathcal{G} be locally definable, **a lattice in** \mathcal{G} is a subgroup $\Gamma \subseteq \mathcal{G}$ such that (i) For every definable $X \subseteq \mathcal{G}$, the set $\Gamma \cap X$ is finite (Γ is locally finite)). (ii) \mathcal{G}/Γ is a definable set.

Example

For *G* a locally compact group, **a lattice in** *G* is a subgroup $L \subseteq G$ such that (i) *L* is discrete and (ii) the *G*-space G/L has **finite** left *G*-invariant Haar measure.

Definition (model theoretic setting)

Let \mathcal{G} be locally definable, **a lattice in** \mathcal{G} is a subgroup $\Gamma \subseteq \mathcal{G}$ such that (i) For every definable $X \subseteq \mathcal{G}$, the set $\Gamma \cap X$ is finite (Γ is locally finite)). (ii) \mathcal{G}/Γ is a definable set.

Example

For *G* a locally compact group, **a lattice in** *G* is a subgroup $L \subseteq G$ such that (i) *L* is discrete and (ii) the *G*-space G/L has **finite** left *G*-invariant Haar measure.

Definition (model theoretic setting)

Let \mathcal{G} be locally definable, **a lattice in** \mathcal{G} is a subgroup $\Gamma \subseteq \mathcal{G}$ such that (i) For every definable $X \subseteq \mathcal{G}$, the set $\Gamma \cap X$ is finite (Γ is locally finite)). (ii) \mathcal{G}/Γ is a definable set.

Example

If \mathcal{G} is **definable** then the only lattices are the finite subgroups (including the trivial group).

 ${}^{\scriptscriptstyle L}\mathcal{G}=igcup_{k\in\mathbb{N}}(-k,k)^n\subseteq R^n$ then ${\Gamma}=\mathbb{Z}^k$ is a lattice.

For *G* a locally compact group, **a lattice in** *G* is a subgroup $L \subseteq G$ such that (i) *L* is discrete and (ii) the *G*-space G/L has **finite** left *G*-invariant Haar measure.

Definition (model theoretic setting)

Let \mathcal{G} be locally definable, **a lattice in** \mathcal{G} is a subgroup $\Gamma \subseteq \mathcal{G}$ such that (i) For every definable $X \subseteq \mathcal{G}$, the set $\Gamma \cap X$ is finite (Γ is locally finite)). (ii) \mathcal{G}/Γ is a definable set.

Example

Let \mathcal{G} be locally definable. For $\Gamma \subseteq \mathcal{G}$ locally finite, \mathcal{G}/Γ is definable iff \exists a definable $Y \subseteq \mathcal{G}$ such that $\Gamma \cdot Y = \mathcal{G}$.

The set Y is "a fundamental set" for Γ .

Proof

\Rightarrow :

If $\phi : \mathcal{G} \to X$ is locally definable with X definable and $\Gamma = ker\phi$, then by compactness there exists a definable $Y \subseteq \mathcal{G}$ with $\phi(Y) = X$. Since $ker\phi = \Gamma$, we have $\Gamma \cdot Y = \mathcal{G}$.

\Leftarrow

Assume $\Gamma \cdot Y = \mathcal{G}$. The group Γ is locally finite so $Y^{-1}Y \cap \Gamma$ is finite. \Rightarrow the relation " $y_1\Gamma = y_2\Gamma$ " is definable for $y_1, y_2 \in Y$. \Rightarrow the set $X = Y/\Gamma$ is definable, and equals \mathcal{G}/Γ . \Rightarrow the natural quotient map $\phi : \mathcal{G} \to X$ is locally definable.

Let \mathcal{G} be locally definable. For $\Gamma \subseteq \mathcal{G}$ locally finite, \mathcal{G}/Γ is definable iff \exists a definable $Y \subseteq \mathcal{G}$ such that $\Gamma \cdot Y = \mathcal{G}$.

The set Y is "a fundamental set" for Γ .

Proof

\Rightarrow

If $\phi : \mathcal{G} \to X$ is locally definable with X definable and $\Gamma = ker\phi$, then by compactness there exists a definable $Y \subseteq \mathcal{G}$ with $\phi(Y) = X$. Since $ker\phi = \Gamma$, we have $\Gamma \cdot Y = \mathcal{G}$.

Assume $\Gamma \cdot Y = \mathcal{G}$. The group Γ is locally finite so $Y^{-1}Y \cap \Gamma$ is f \Rightarrow the relation " $y_1\Gamma = y_2\Gamma$ " is definable for $y_1, y_2 \in Y$. \Rightarrow the set $X = Y/\Gamma$ is definable, and equals \mathcal{G}/Γ . \Rightarrow the natural quotient map $\phi : \mathcal{G} \to X$ is locally definable.

Let \mathcal{G} be locally definable. For $\Gamma \subseteq \mathcal{G}$ locally finite, \mathcal{G}/Γ is definable iff \exists a definable $Y \subseteq \mathcal{G}$ such that $\Gamma \cdot Y = \mathcal{G}$.

The set Y is "a fundamental set" for Γ .

Proof \Rightarrow If $\phi: \mathcal{G} \to X$ is locally definable with X definable and $\Gamma = ker\phi$, then by compactness there exists a definable $Y \subseteq \mathcal{G}$ with $\phi(Y) = X$. Since ker $\phi = \Gamma$, we have $\Gamma \cdot Y = \mathcal{G}$. ⇐: Assume $\Gamma \cdot Y = \mathcal{G}$. The group Γ is locally finite so $Y^{-1}Y \cap \Gamma$ is finite.

Let \mathcal{G} be locally definable. For $\Gamma \subseteq \mathcal{G}$ locally finite, \mathcal{G}/Γ is definable iff \exists a definable $Y \subseteq \mathcal{G}$ such that $\Gamma \cdot Y = \mathcal{G}$.

The set Y is "a fundamental set" for Γ .

Proof \Rightarrow : If $\phi: \mathcal{G} \to X$ is locally definable with X definable and $\Gamma = ker\phi$, then by compactness there exists a definable $Y \subseteq \mathcal{G}$ with $\phi(Y) = X$. Since ker $\phi = \Gamma$, we have $\Gamma \cdot Y = \mathcal{G}$. ⇐: Assume $\Gamma \cdot Y = \mathcal{G}$. The group Γ is locally finite so $Y^{-1}Y \cap \Gamma$ is finite.

Fact

Let \mathcal{G} be locally definable. For $\Gamma \subseteq \mathcal{G}$ locally finite, \mathcal{G}/Γ is definable iff \exists a definable $Y \subseteq \mathcal{G}$ such that $\Gamma \cdot Y = \mathcal{G}$.

The set Y is "a fundamental set" for Γ .

Proof \Rightarrow : If $\phi: \mathcal{G} \to X$ is locally definable with X definable and $\Gamma = ker\phi$, then by compactness there exists a definable $Y \subseteq \mathcal{G}$ with $\phi(Y) = X$. Since ker $\phi = \Gamma$, we have $\Gamma \cdot Y = \mathcal{G}$. ⇐: Assume $\Gamma \cdot Y = \mathcal{G}$. The group Γ is locally finite so $Y^{-1}Y \cap \Gamma$ is finite. \Rightarrow the relation " $y_1 \Gamma = y_2 \Gamma$ " is definable for $y_1, y_2 \in Y$.

Fact

Let \mathcal{G} be locally definable. For $\Gamma \subseteq \mathcal{G}$ locally finite, \mathcal{G}/Γ is definable iff \exists a definable $Y \subseteq \mathcal{G}$ such that $\Gamma \cdot Y = \mathcal{G}$.

The set Y is "a fundamental set" for Γ .

Proof \Rightarrow : If $\phi: \mathcal{G} \to X$ is locally definable with X definable and $\Gamma = ker\phi$, then by compactness there exists a definable $Y \subseteq \mathcal{G}$ with $\phi(Y) = X$. Since ker $\phi = \Gamma$, we have $\Gamma \cdot \mathbf{Y} = \mathcal{G}$. ⇐: Assume $\Gamma \cdot Y = \mathcal{G}$. The group Γ is locally finite so $Y^{-1}Y \cap \Gamma$ is finite. \Rightarrow the relation " $y_1 \Gamma = y_2 \Gamma$ " is definable for $y_1, y_2 \in Y$. \Rightarrow the set $X = Y/\Gamma$ is definable, and equals \mathcal{G}/Γ .

Fact

Let \mathcal{G} be locally definable. For $\Gamma \subseteq \mathcal{G}$ locally finite, \mathcal{G}/Γ is definable iff \exists a definable $Y \subseteq \mathcal{G}$ such that $\Gamma \cdot Y = \mathcal{G}$.

The set Y is "a fundamental set" for Γ .

Proof

\Rightarrow :

If $\phi : \mathcal{G} \to X$ is locally definable with X definable and $\Gamma = ker\phi$, then by compactness there exists a definable $Y \subseteq \mathcal{G}$ with $\phi(Y) = X$. Since $ker\phi = \Gamma$, we have $\Gamma \cdot Y = \mathcal{G}$.

⇐.

Assume $\Gamma \cdot Y = \mathcal{G}$. The group Γ is locally finite so $Y^{-1}Y \cap \Gamma$ is finite. \Rightarrow the relation " $y_1\Gamma = y_2\Gamma$ " is definable for $y_1, y_2 \in Y$.

$$\Rightarrow$$
 the set $X = Y/\Gamma$ is definable, and equals \mathcal{G}/Γ .

 \Rightarrow the natural quotient map $\phi : \mathcal{G} \rightarrow X$ is locally definable.

Lattices are finitely generated

If \mathcal{G} is connected (no clopen compatible subset) and Γ is a lattice in \mathcal{G} then Γ is a finitely generated group.

Proof

Let $Y \subseteq G$ be definable fundamental set, $\Gamma \cdot Y = G$. The set Y has finitely many "neighbors". Namely, the following set is finite:

 $A = \{\gamma \in \Gamma : \gamma \overline{Y} \cap \overline{Y} \neq \varnothing\} = (\overline{Y})(\overline{Y})^{-1} \cap \Gamma$

W.I.o, $e \in Y$. We now show that A generates Γ : Given $\gamma_0 \in \Gamma$, there is a definable path $\sigma \subseteq \mathcal{G}$ connecting e and γ_0 . The path σ passes through $Y, \gamma_1 Y, \ldots, \gamma_k Y = \gamma_0 Y$, with each $\gamma_{i+1} Y$ a neighbor of $\gamma_i Y$, so $\gamma_{i+1}^{-1} \gamma_i \in A$. Hence, $\gamma_0 \in \langle A \rangle$.

Lattices are finitely generated

If \mathcal{G} is connected (no clopen compatible subset) and Γ is a lattice in \mathcal{G} then Γ is a finitely generated group.

Proof

Let $Y \subseteq \mathcal{G}$ be definable fundamental set, $\Gamma \cdot Y = \mathcal{G}$. The set Y has finitely many "neighbors". Namely, the following set is finite:

 $\boldsymbol{A} = \{\gamma \in \boldsymbol{\Gamma} : \gamma \overline{\boldsymbol{Y}} \cap \overline{\boldsymbol{Y}} \neq \varnothing\} = (\overline{\boldsymbol{Y}})(\overline{\boldsymbol{Y}})^{-1} \cap \boldsymbol{\Gamma}$

W.l.o, $e \in Y$. We now show that A generates Γ : Given $\gamma_0 \in \Gamma$, there is a definable path $\sigma \subseteq \mathcal{G}$ connecting e and γ_0 . The path σ passes through $Y, \gamma_1 Y, \dots, \gamma_k Y = \gamma_0 Y$, with each $\gamma_{i+1} Y$ a neighbor of $\gamma_i Y$, so $\gamma_{i+1}^{-1} \gamma_i \in A$. Hence, $\gamma_0 \in \langle A \rangle$.

Lattices are finitely generated

If \mathcal{G} is connected (no clopen compatible subset) and Γ is a lattice in \mathcal{G} then Γ is a finitely generated group.

Proof

Let $Y \subseteq \mathcal{G}$ be definable fundamental set, $\Gamma \cdot Y = \mathcal{G}$. The set Y has finitely many "neighbors". Namely, the following set is finite:

 $\boldsymbol{A} = \{\gamma \in \Gamma : \gamma \overline{\boldsymbol{Y}} \cap \overline{\boldsymbol{Y}} \neq \varnothing\} = (\overline{\boldsymbol{Y}})(\overline{\boldsymbol{Y}})^{-1} \cap \Gamma$

W.I.o, $e \in Y$. We now show that A generates Γ : Given $\gamma_0 \in \Gamma$, there is a definable path $\sigma \subseteq \mathcal{G}$ connecting e and γ_0 . The path σ passes through $Y, \gamma_1 Y, \dots, \gamma_k Y = \gamma_0 Y$, with each $\gamma_{i+1} Y$ a neighbor of $\gamma_i Y$, so $\gamma_{i+1}^{-1} \gamma_i \in A$. Hence, $\gamma_0 \in \langle A \rangle$.

Lattices are finitely generated

If \mathcal{G} is connected (no clopen compatible subset) and Γ is a lattice in \mathcal{G} then Γ is a finitely generated group.

Proof

Let $Y \subseteq \mathcal{G}$ be definable fundamental set, $\Gamma \cdot Y = \mathcal{G}$. The set Y has finitely many "neighbors". Namely, the following set is finite:

 $\boldsymbol{A} = \{\gamma \in \Gamma : \gamma \overline{\boldsymbol{Y}} \cap \overline{\boldsymbol{Y}} \neq \varnothing\} = (\overline{\boldsymbol{Y}})(\overline{\boldsymbol{Y}})^{-1} \cap \Gamma$

W.I.o, $e \in Y$. We now show that A generates Γ :

Given $\gamma_0 \in \Gamma$, there is a definable path $\sigma \subseteq \mathcal{G}$ connecting e and γ_0 . The path σ passes through $Y, \gamma_1 Y, \ldots, \gamma_k Y = \gamma_0 Y$, with each $\gamma_{i+1} Y$ a neighbor of $\gamma_i Y$, so $\gamma_{i+1}^{-1} \gamma_i \in A$. Hence, $\gamma_0 \in \langle A \rangle$.

Lattices are finitely generated

If \mathcal{G} is connected (no clopen compatible subset) and Γ is a lattice in \mathcal{G} then Γ is a finitely generated group.

Proof

Let $Y \subseteq \mathcal{G}$ be definable fundamental set, $\Gamma \cdot Y = \mathcal{G}$. The set Y has finitely many "neighbors". Namely, the following set is finite:

 $\boldsymbol{A} = \{\gamma \in \Gamma: \gamma \overline{\boldsymbol{Y}} \cap \overline{\boldsymbol{Y}} \neq \varnothing\} = (\overline{\boldsymbol{Y}})(\overline{\boldsymbol{Y}})^{-1} \cap \Gamma$

W.l.o, $e \in Y$. We now show that *A* generates Γ : Given $\gamma_0 \in \Gamma$, there is a definable path $\sigma \subseteq \mathcal{G}$ connecting *e* and γ_0 . The path σ passes through $Y, \gamma_1 Y, \dots, \gamma_k Y = \gamma_0 Y$, with each $\gamma_{i+1} Y$ a neighbor of $\gamma_i Y$, so $\gamma_{i+1}^{-1} \gamma_i \in A$. Hence, $\gamma_0 \in \langle A \rangle$.

Lattices are finitely generated

If \mathcal{G} is connected (no clopen compatible subset) and Γ is a lattice in \mathcal{G} then Γ is a finitely generated group.

Proof

Let $Y \subseteq \mathcal{G}$ be definable fundamental set, $\Gamma \cdot Y = \mathcal{G}$. The set Y has finitely many "neighbors". Namely, the following set is finite:

 $\boldsymbol{A} = \{\gamma \in \boldsymbol{\Gamma} : \gamma \, \overline{\boldsymbol{Y}} \cap \overline{\boldsymbol{Y}} \neq \varnothing\} = (\overline{\boldsymbol{Y}})(\overline{\boldsymbol{Y}})^{-1} \cap \boldsymbol{\Gamma}$

W.l.o, $e \in Y$. We now show that A generates Γ : Given $\gamma_0 \in \Gamma$, there is a definable path $\sigma \subseteq \mathcal{G}$ connecting e and γ_0 . The path σ passes through $Y, \gamma_1 Y, \ldots, \gamma_k Y = \gamma_0 Y$, with each $\gamma_{i+1} Y$ a neighbor of $\gamma_i Y$, so $\gamma_{i+1}^{-1} \gamma_i \in A$. Hence, $\gamma_0 \in \langle A \rangle$.

Lattices are finitely generated

If \mathcal{G} is connected (no clopen compatible subset) and Γ is a lattice in \mathcal{G} then Γ is a finitely generated group.

Proof

Let $Y \subseteq \mathcal{G}$ be definable fundamental set, $\Gamma \cdot Y = \mathcal{G}$. The set Y has finitely many "neighbors". Namely, the following set is finite:

 $\boldsymbol{A} = \{\gamma \in \boldsymbol{\Gamma} : \gamma \, \overline{\boldsymbol{Y}} \cap \overline{\boldsymbol{Y}} \neq \varnothing\} = (\overline{\boldsymbol{Y}})(\overline{\boldsymbol{Y}})^{-1} \cap \boldsymbol{\Gamma}$

W.l.o, $e \in Y$. We now show that A generates Γ : Given $\gamma_0 \in \Gamma$, there is a definable path $\sigma \subseteq \mathcal{G}$ connecting e and γ_0 . The path σ passes through $Y, \gamma_1 Y, \ldots, \gamma_k Y = \gamma_0 Y$, with each $\gamma_{i+1} Y$ a neighbor of $\gamma_i Y$, so $\gamma_{i+1}^{-1} \gamma_i \in A$. Hence, $\gamma_0 \in \langle A \rangle$.

We can replace locally finite with compatible, 0-dimensional.

Main Question

Which locally definable groups contain a lattice?

Classical setting

(Borel) Every connected semisimple Lie group contains a lattice. E.g. $SL(2,\mathbb{Z})$ is a lattice in $SL(2,\mathbb{R})$ and the quotient is S^3 – trefoil knot. But the solvable group $\left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a \neq 0, b \in \mathbb{R} \right\}$ does not contain a lattice.

O-minimal setting, an immediate obstacle

We can replace locally finite with compatible, 0-dimensional.

Main Question

Which locally definable groups contain a lattice?

Classical setting

(Borel) Every connected semisimple Lie group contains a lattice. E.g. $SL(2,\mathbb{Z})$ is a lattice in $SL(2,\mathbb{R})$ and the quotient is S^3 – trefoil knot. But the solvable group $\left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a \neq 0, b \in \mathbb{R} \right\}$ does not contain a lattice.

O-minimal setting, an immediate obstacle

We can replace locally finite with compatible, 0-dimensional.

Main Question

Which locally definable groups contain a lattice?

Classical setting

(Borel) Every connected semisimple Lie group contains a lattice. E.g. $SL(2,\mathbb{Z})$ is a lattice in $SL(2,\mathbb{R})$ and the quotient is S^3 – trefoil knot. But the solvable group $\left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a \neq 0, b \in \mathbb{R} \right\}$ does not contain a lattice.

O-minimal setting, an immediate obstacle

We can replace locally finite with compatible, 0-dimensional.

Main Question

Which locally definable groups contain a lattice?

Classical setting

(Borel) Every connected semisimple Lie group contains a lattice.

E.g. $SL(2,\mathbb{Z})$ is a lattice in $SL(2,\mathbb{R})$ and the quotient is S^3 – trefoil knot.

But the solvable group $\{egin{pmatrix} a&b\\0&a^{-1} \end{pmatrix}:a
eq 0,b\in\mathbb{R}\}$ does not contain a

lattice.

O-minimal setting, an immediate obstacle

We can replace locally finite with compatible, 0-dimensional.

Main Question

Which locally definable groups contain a lattice?

Classical setting

(Borel) Every connected semisimple Lie group contains a lattice. E.g. $SL(2,\mathbb{Z})$ is a lattice in $SL(2,\mathbb{R})$ and the quotient is S^3 – trefoil knot. But the solvable group { $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$: $a \neq 0, b \in \mathbb{R}$ } does not contain a lattice.

O-minimal setting, an immediate obstacle

We can replace locally finite with compatible, 0-dimensional.

Main Question

Which locally definable groups contain a lattice?

Classical setting

(Borel) Every connected semisimple Lie group contains a lattice.

E.g. $SL(2,\mathbb{Z})$ is a lattice in $SL(2,\mathbb{R})$ and the quotient is S^3 – trefoil knot.

But the solvable group $\left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a \neq 0, b \in \mathbb{R} \right\}$ does not contain a

lattice.

O-minimal setting, an immediate obstacle

A necessary condition

If \mathcal{G} is a locally definable and connected (no compatible clopen subset with respect to the group topology) and \mathcal{G} contains a lattice then it must be definably generated.

Modified Question

Which connected definably generated groups contain a lattice?

A necessary condition

If \mathcal{G} is a locally definable and connected (no compatible clopen subset with respect to the group topology) and \mathcal{G} contains a lattice then it must be definably generated.

Modified Question

Which connected definably generated groups contain a lattice?

A necessary condition

If \mathcal{G} is a locally definable and connected (no compatible clopen subset with respect to the group topology) and \mathcal{G} contains a lattice then it must be definably generated.

Modified Question

Which connected definably generated groups contain a lattice?

A definable set $Y \subseteq \mathcal{G}$ is **left generic in** \mathcal{G} if boundedly many left translates of Y cover \mathcal{G} . Equivalently, every definable set in \mathcal{G} can be covered by finitely many left translates of Y.

Lattice — generic set

If \mathcal{G} contains a lattice then it contains a definable fundamental set Y, $\Gamma \cdot Y = \mathcal{G}$. So \mathcal{G} contains a definable generic set.

Is the converse also true?

A definable set $Y \subseteq \mathcal{G}$ is **left generic in** \mathcal{G} if boundedly many left translates of Y cover \mathcal{G} . Equivalently, every definable set in \mathcal{G} can be covered by finitely many left translates of Y.

Lattice generic set

If \mathcal{G} contains a lattice then it contains a definable fundamental set Y, $\Gamma \cdot Y = \mathcal{G}$. So \mathcal{G} contains a definable generic set.

Is the converse also true?

A definable set $Y \subseteq \mathcal{G}$ is **left generic in** \mathcal{G} if boundedly many left translates of Y cover \mathcal{G} . Equivalently, every definable set in \mathcal{G} can be covered by finitely many left translates of Y.

Lattice \Rightarrow generic set

If \mathcal{G} contains a lattice then it contains a definable fundamental set Y, $\Gamma \cdot Y = \mathcal{G}$. So \mathcal{G} contains a definable generic set.

Is the converse also true?

A definable set $Y \subseteq \mathcal{G}$ is **left generic in** \mathcal{G} if boundedly many left translates of Y cover \mathcal{G} . Equivalently, every definable set in \mathcal{G} can be covered by finitely many left translates of Y.

Lattice \Rightarrow generic set

If \mathcal{G} contains a lattice then it contains a definable fundamental set Y, $\Gamma \cdot Y = \mathcal{G}$. So \mathcal{G} contains a definable generic set.

Is the converse also true?

The last question has a positive answer in the abelian case.

Theorem (Elefetheriou-P)

Assume that \mathcal{G} is connected, definably generated and abelian. If \mathcal{G} contains a definable generic set then it contains a lattice, isomorphic to \mathbb{Z}^k with $k \leq \dim \mathcal{G}$.

About the proof

The last question has a positive answer in the abelian case.

Theorem (Elefetheriou-P)

Assume that \mathcal{G} is connected, definably generated and abelian. If \mathcal{G} contains a definable generic set then it contains a lattice, isomorphic to \mathbb{Z}^k with $k \leq \dim \mathcal{G}$.

About the proof

The last question has a positive answer in the abelian case.

Theorem (Elefetheriou-P)

Assume that \mathcal{G} is connected, definably generated and abelian. If \mathcal{G} contains a definable generic set then it contains a lattice, isomorphic to \mathbb{Z}^k with $k \leq \dim \mathcal{G}$.

About the proof

The last question has a positive answer in the abelian case.

Theorem (Elefetheriou-P)

Assume that \mathcal{G} is connected, definably generated and abelian. If \mathcal{G} contains a definable generic set then it contains a lattice, isomorphic to \mathbb{Z}^k with $k \leq \dim \mathcal{G}$.

About the proof

If \mathcal{G} contains a generic set then there exists a minimal type-definable normal subgroup of bounded index \mathcal{G}^{00} .

The group $\mathcal{G}/\mathcal{G}^{00}$, with the Logic topology, is a connected real abelian Lie group of dimension at most dim \mathcal{G} , so $\cong \mathbb{T} \times \mathbb{R}^k$. If $\mathcal{G}/\mathcal{G}^{00} = \mathbb{T}$ then \mathcal{G} is already definable. Otherwise, \mathbb{R}^k contains a standard lattice $\Lambda = \bigoplus_{i=1}^k \mathbb{Z}\lambda_i$. If

The last question has a positive answer in the abelian case.

Theorem (Elefetheriou-P)

Assume that \mathcal{G} is connected, definably generated and abelian. If \mathcal{G} contains a definable generic set then it contains a lattice, isomorphic to \mathbb{Z}^k with $k \leq \dim \mathcal{G}$.

About the proof

The last question has a positive answer in the abelian case.

Theorem (Elefetheriou-P)

Assume that \mathcal{G} is connected, definably generated and abelian. If \mathcal{G} contains a definable generic set then it contains a lattice, isomorphic to \mathbb{Z}^k with $k \leq \dim \mathcal{G}$.

About the proof

If \mathcal{G} contains a generic set then there exists a minimal type-definable normal subgroup of bounded index \mathcal{G}^{00} . The group $\mathcal{G}/\mathcal{G}^{00}$, with the Logic topology, is a connected real abelian Lie group of dimension at most dim \mathcal{G} , so $\cong \mathbb{T} \times \mathbb{R}^{k}$. If $\mathcal{G}/\mathcal{G}^{00} = \mathbb{T}$ then \mathcal{G} is already definable. Otherwise, \mathbb{R}^{k} contains a standard lattice $\Lambda = \bigoplus_{i=1}^{k} \mathbb{Z}\lambda_{i}$. If

The last question has a positive answer in the abelian case.

Theorem (Elefetheriou-P)

Assume that \mathcal{G} is connected, definably generated and abelian. If \mathcal{G} contains a definable generic set then it contains a lattice, isomorphic to \mathbb{Z}^k with $k \leq \dim \mathcal{G}$.

About the proof

Conjecture

Every connected, definably generated (abelian) group contains a definable generic set.

Note

A definably generated *G* contains a generic set if and only if it has a definable generating "approximate subgroup". i.e. a symmetric set *Y* such that *YY* ⊆ *F* · *Y* for some finite *F*.
Choosing a generating *Y* with dim *Y* = dim *G* is not enough to ensure that it is generic.

Conjecture

Every connected, definably generated (abelian) group contains a definable generic set.

Note

• A definably generated \mathcal{G} contains a generic set if and only if it has a definable generating "approximate subgroup". i.e. a symmetric set Y such that $YY \subseteq F \cdot Y$ for some finite F.

• Choosing a generating Y with dim $Y = \dim G$ is not enough to ensure that it is generic.

Conjecture

Every connected, definably generated (abelian) group contains a definable generic set.

Note

• A definably generated \mathcal{G} contains a generic set if and only if it has a definable generating "approximate subgroup". i.e. a symmetric set Y such that $YY \subseteq F \cdot Y$ for some finite F.

• Choosing a generating Y with dim $Y = \dim \mathcal{G}$ is not enough to ensure that it is generic.

Theorem (Berarucci-Edmundo-Mamino)

If \mathcal{G} is a connected, locally definable (not necessarily definably generated!) abelian group and $\Gamma \subseteq \mathcal{G}$ is compatible and 0-dimensional then $rank(\Gamma) \leq \dim \mathcal{G}$. It follows that for every *n*, the *n*-torsion group $\mathcal{G}[n]$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^s$, for $s \leq \dim \mathcal{G}$.

Theorem (Berarucci-Edmundo-Mamino)

If \mathcal{G} is a connected, locally definable (not necessarily definably generated!) abelian group and $\Gamma \subseteq \mathcal{G}$ is compatible and 0-dimensional then $rank(\Gamma) \leq \dim \mathcal{G}$. It follows that for every *n*, the *n*-torsion group $\mathcal{G}[n]$ is isomorphic to

 $(\mathbb{Z}/n\mathbb{Z})^s$, for $s \leq \dim \mathcal{G}$.

Theorem (Berarucci-Edmundo-Mamino)

If \mathcal{G} is a connected, locally definable (not necessarily definably generated!) abelian group and $\Gamma \subseteq \mathcal{G}$ is compatible and 0-dimensional then $rank(\Gamma) \leq \dim \mathcal{G}$. It follows that for every *n*, the *n*-torsion group $\mathcal{G}[n]$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^s$, for $s \leq \dim \mathcal{G}$.

Theorem (Berarucci-Edmundo-Mamino)

If \mathcal{G} is a connected, locally definable (not necessarily definably generated!) abelian group and $\Gamma \subseteq \mathcal{G}$ is compatible and 0-dimensional then $rank(\Gamma) \leq \dim \mathcal{G}$. It follows that for every *n*, the *n*-torsion group $\mathcal{G}[n]$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^s$, for $s \leq \dim \mathcal{G}$.

Equivalences of the conjecture for abelian groups

Summarizing the results:

Theorem (EP)

Let \mathcal{G} be a connected, definably generated abelian group. The following are equivalent:

- 1. G contains a lattice.
- 2. G contains a definable generic set.
- 3. The group \mathcal{G}^{00} exists.

By the result of B-E-M, in order to prove that the above are all true, it is enough to prove:

Let \mathcal{G} be connected, definably generated, abelian. Then either \mathcal{G} is **definable** or there exists $g \in \mathcal{G}$ such that $\langle g \rangle$ is infinite and compatible in \mathcal{G} .

Equivalences of the conjecture for abelian groups

Summarizing the results:

Theorem (EP)

Let \mathcal{G} be a connected, definably generated abelian group. The following are equivalent:

- 1. G contains a lattice.
- 2. *G* contains a definable generic set.
- 3. The group \mathcal{G}^{00} exists.

By the result of B-E-M, in order to prove that the above are all true, it is enough to prove:

Let \mathcal{G} be connected, definably generated, abelian. Then either \mathcal{G} is **definable** or there exists $g \in \mathcal{G}$ such that $\langle g \rangle$ is infinite and compatible in \mathcal{G} .

Theorem (E-P)

Let *R* be a real closed field. If \mathcal{G} is a definably generated subgroup of $(\mathbb{R}^n, +)$, definable in an o-minimal expansion of *R*, then \mathcal{G} contains a lattice, and all the above properties hold.

The main tool is the following connection to convexity:

Main lemma

Let $X \subseteq \mathbb{R}^n$ be a definable symmetric set containing 0. Then there is an *n* such that

 $\overbrace{X+\cdots+X}^{n \text{ times}}$

contains the *R*-convex hull of *X*.

Theorem (E-P)

Let *R* be a real closed field. If \mathcal{G} is a definably generated subgroup of $(\mathbb{R}^n, +)$, definable in an o-minimal expansion of *R*, then \mathcal{G} contains a lattice, and all the above properties hold.

The main tool is the following connection to convexity:

Main lemma Let $X \subseteq \mathbb{R}^n$ be a definable symmetric set containing 0. Then there is an *n* such that

contains the R-convex hull of X.

Question

Is every connected, locally definable abelian group necessarily divisible? (Conjecture: YES)

Theorem (B-E-M)

Let ${\cal G}$ be a connected, definably generated abelian group. Then ${\cal G}$ contains a lattice if and only if:

(i) \mathcal{G} is divisible, and

(ii) for every definable $X \subseteq \mathcal{G}$ there exists a definable $Y \subseteq \mathcal{G}$, such that Y contains the " \mathcal{G} -convex hull of X".

Question

Is every connected, locally definable abelian group necessarily divisible? (Conjecture: YES)

Theorem (B-E-M)

Let G be a connected, definably generated abelian group. Then G contains a lattice if and only if:

(i) \mathcal{G} is divisible, and

(ii) for every definable $X \subseteq \mathcal{G}$ there exists a definable $Y \subseteq \mathcal{G}$, such that Y contains the " \mathcal{G} -convex hull of X".

Question

Is every connected, locally definable abelian group necessarily divisible? (Conjecture: YES)

Theorem (B-E-M)

Let \mathcal{G} be a connected, definably generated abelian group. Then \mathcal{G} contains a lattice if and only if:

(i) \mathcal{G} is divisible, and

(ii) for every definable $X \subseteq \mathcal{G}$ there exists a definable $Y \subseteq \mathcal{G}$, such that Y contains the " \mathcal{G} -convex hull of X".

Question

Is every connected, locally definable abelian group necessarily divisible? (Conjecture: YES)

Theorem (B-E-M)

Let \mathcal{G} be a connected, definably generated abelian group. Then \mathcal{G} contains a lattice if and only if:

(i) \mathcal{G} is divisible, and

(ii) for every definable $X \subseteq \mathcal{G}$ there exists a definable $Y \subseteq \mathcal{G}$, such that Y contains the "*G* convex hull of X"

Y contains the " \mathcal{G} -convex hull of X".