Topological dynamics of stable groups

Ludomir Newelski

Instytut Matematyczny Uniwersytet Wrocławski

June 2013

Newelski Topological dynamics of stable groups

${\cal T}$ is a stable theory in language ${\cal L}$

 \mathfrak{C} is a monster model of T $M \prec \mathfrak{C}$ G is a group definable in M $S_G(M) = \{tp(a/M) : a \in G^{\mathfrak{C}}\}$

Definition

Let
$$p, q \in S_G(M)$$

 $p * q = tp(a \cdot b/M)$, where $a \models p, b \models q$ and $a \downarrow_M b$

- $(S_G(M), *)$ is a semi-group
- Gen := {p ∈ S_G(M) : p is generic} is a maximal subgroup of S_G(M),
 a minimal left ideal in S_G(M).
- Gen \cong $G^{\mathfrak{C}}/(G^0)^{\mathfrak{C}}$

T is a stable theory in language L \mathfrak{C} is a monster model of T $M \prec \mathfrak{C}$

G is a group definable in *M* $S_G(M) = \{tp(a/M) : a \in G^{\mathfrak{C}}\}$

Definition

Let $p, q \in S_G(M)$ $p * q = tp(a \cdot b/M)$, where $a \models p, b \models q$ and $a \downarrow_M b$

- $(S_G(M), *)$ is a semi-group
- Gen := {p ∈ S_G(M) : p is generic} is a maximal subgroup of S_G(M),
 a minimal left ideal in S_G(M).
- Gen $\cong G^{\mathfrak{C}}/(G^0)^{\mathfrak{C}}$

T is a stable theory in language L \mathfrak{C} is a monster model of T $M \prec \mathfrak{C}$ G is a group definable in M $S_G(M) = \{tp(a/M) : a \in G^{\mathfrak{C}}\}$

Definition

Let $p, q \in S_G(M)$ $p * q = tp(a \cdot b/M)$, where $a \models p, b \models q$ and $a \downarrow_M b$

- $(S_G(M), *)$ is a semi-group
- Gen := {p ∈ S_G(M) : p is generic} is a maximal subgroup of S_G(M),
 a minimal left ideal in S_G(M).
- Gen $\cong G^{\mathfrak{C}}/(G^0)^{\mathfrak{C}}$

T is a stable theory in language L \mathfrak{C} is a monster model of T $M \prec \mathfrak{C}$ G is a group definable in M $S_G(M) = \{tp(a/M) : a \in G^{\mathfrak{C}}\}$

Definition

Let $p, q \in S_G(M)$ $p * q = tp(a \cdot b/M)$, where $a \models p, b \models q$ and $a \downarrow_M$

- $(S_G(M), *)$ is a semi-group
- Gen := {p ∈ S_G(M) : p is generic} is a maximal subgroup of S_G(M),
 a minimal left ideal in S_G(M).
- Gen $\cong G^{\mathfrak{C}}/(G^0)^{\mathfrak{C}}$

T is a stable theory in language L \mathfrak{C} is a monster model of T $M \prec \mathfrak{C}$ G is a group definable in M $S_G(M) = \{tp(a/M) : a \in G^{\mathfrak{C}}\}$

Definition

Let
$$p, q \in S_G(M)$$

 $p * q = tp(a \cdot b/M)$, where $a \models p, b \models q$ and $a \downarrow_M b$

- $(S_G(M), *)$ is a semi-group
- Gen := {p ∈ S_G(M) : p is generic} is a maximal subgroup of S_G(M),
 a minimal left ideal in S_G(M).
- Gen $\cong G^{\mathfrak{C}}/(G^0)^{\mathfrak{C}}$

T is a stable theory in language L \mathfrak{C} is a monster model of T $M \prec \mathfrak{C}$ G is a group definable in M $S_G(M) = \{tp(a/M) : a \in G^{\mathfrak{C}}\}$

Definition

Let
$$p, q \in S_G(M)$$

 $p * q = tp(a \cdot b/M)$, where $a \models p, b \models q$ and $a \downarrow_M b$

• $(S_G(M), *)$ is a semi-group

- Gen := { $p \in S_G(M)$: p is generic} is a maximal subgroup of $S_G(M)$, a minimal left ideal in $S_G(M)$.
- Gen $\cong G^{\mathfrak{C}}/(G^0)^{\mathfrak{C}}$

T is a stable theory in language L \mathfrak{C} is a monster model of T $M \prec \mathfrak{C}$ G is a group definable in M $S_G(M) = \{tp(a/M) : a \in G^{\mathfrak{C}}\}$

Definition

Let
$$p, q \in S_G(M)$$

 $p * q = tp(a \cdot b/M)$, where $a \models p, b \models q$ and $a \downarrow_M b$

- $(S_G(M), *)$ is a semi-group
- Gen := { $p \in S_G(M)$: p is generic} is a maximal subgroup of $S_G(M)$,

a minimal left ideal in $S_G(M)$.

• Gen $\cong G^{\mathfrak{C}}/(G^0)^{\mathfrak{C}}$

T is a stable theory in language L \mathfrak{C} is a monster model of T $M \prec \mathfrak{C}$ G is a group definable in M $S_G(M) = \{tp(a/M) : a \in G^{\mathfrak{C}}\}$

Definition

Let
$$p, q \in S_G(M)$$

 $p * q = tp(a \cdot b/M)$, where $a \models p, b \models q$ and $a \downarrow_M b$

- $(S_G(M), *)$ is a semi-group
- Gen := {p ∈ S_G(M) : p is generic} is a maximal subgroup of S_G(M),
 a minimal left ideal in S_G(M).
- Gen $\cong G^{\mathfrak{C}}/(G^0)^{\mathfrak{C}}$

T is a stable theory in language L \mathfrak{C} is a monster model of T $M \prec \mathfrak{C}$ G is a group definable in M $S_G(M) = \{tp(a/M) : a \in G^{\mathfrak{C}}\}$

Definition

Let
$$p, q \in S_G(M)$$

 $p * q = tp(a \cdot b/M)$, where $a \models p, b \models q$ and $a \downarrow_M b$

- $(S_G(M), *)$ is a semi-group
- Gen := {p ∈ S_G(M) : p is generic} is a maximal subgroup of S_G(M),
 a minimal left ideal in S_G(M).
- Gen $\cong G^{\mathfrak{C}}/(G^0)^{\mathfrak{C}}$

 $(S_G(M), *)$ is an inverse limit of a definable system of type-definable semigroups (in M^{eq}).

The proof uses:

- the definability lemma in local stability theory (the full version, Pillay)
- topological dynamics, particularly the functional representation of *G*-types.

- **→** → **→**

 $(S_G(M), *)$ is an inverse limit of a definable system of type-definable semigroups (in M^{eq}).

The proof uses:

- the definability lemma in local stability theory (the full version, Pillay)
- topological dynamics, particularly the functional representation of *G*-types.

 $(S_G(M), *)$ is an inverse limit of a definable system of type-definable semigroups (in M^{eq}).

The proof uses:

- the definability lemma in local stability theory (the full version, Pillay)
- topological dynamics, particularly the functional representation of *G*-types.

 $(S_G(M), *)$ is an inverse limit of a definable system of type-definable semigroups (in M^{eq}).

The proof uses:

- the definability lemma in local stability theory (the full version, Pillay)
- topological dynamics, particularly the functional representation of *G*-types.

(1) X is a **G-flow** if

- X is a compact topological space
- G acts on X by homeomorphisms

(2) X is point-transitive if there is a dense G-orbit $\subseteq X$. (3) $Y \subseteq X$ is a G-subflow of X if Y is closed and G-closed.

Example

(1) X is a **G-flow** if

- X is a compact topological space
- G acts on X by homeomorphisms

(2) X is point-transitive if there is a dense G-orbit $\subseteq X$. (3) $Y \subseteq X$ is a G-subflow of X if Y is closed and G-closed.

Example

(1) X is a G-flow if

- X is a compact topological space
- G acts on X by homeomorphisms

(2) X is point-transitive if there is a dense G-orbit ⊆ X.
(3) Y ⊆ X is a G-subflow of X if Y is closed and G-closed

Example

(1) X is a G-flow if

- X is a compact topological space
- G acts on X by homeomorphisms

(2) X is point-transitive if there is a dense G-orbit $\subseteq X$. (3) $Y \subseteq X$ is a G-subflow of X if Y is closed and G-closed.

Example

(1) X is a **G-flow** if

- X is a compact topological space
- G acts on X by homeomorphisms

(2) X is point-transitive if there is a dense G-orbit $\subseteq X$. (3) $Y \subseteq X$ is a G-subflow of X if Y is closed and G-closed.

Example

Assume X is a G-flow and $p \in X$.

(4) *p* is almost periodic if *cl*(*Gp*) is a minimal subflow of *X*.
(5) *U* ⊆ *X* is generic if (∃*A* ⊆_{*fin*} *G*)*AU* = *X*.
(6) *U* ⊆ *X* is weakly generic if (∃*V* ⊆ *X*)*U* ∪ *V* is generic and *V* non-generic.

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$. (4) p is almost periodic if cl(Gp) is a minimal subflow of X. (5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$. (6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic. (7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$. (4) p is almost periodic if cl(Gp) is a minimal subflow of X. (5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$. (6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic. (7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$. (4) p is almost periodic if cl(Gp) is a minimal subflow of X. (5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$. (6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic.

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$. (4) p is almost periodic if cl(Gp) is a minimal subflow of X. (5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$. (6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic. (7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$. (4) p is almost periodic if cl(Gp) is a minimal subflow of X. (5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$. (6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic. (7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow.

Assume X is a G-flow and $p \in X$. (4) p is almost periodic if cl(Gp) is a minimal subflow of X. (5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$. (6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic. (7) p is [weakly] generic if every open $U \supseteq p$ is

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$. (4) p is almost periodic if cl(Gp) is a minimal subflow of X. (5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$. (6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic. (7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$. (4) p is almost periodic if cl(Gp) is a minimal subflow of X. (5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$. (6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic. (7) n is function if summary $U \supseteq n$ is

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow.

$$WGen(X) = \{p \in X : p \text{ is weakly generic}\}$$

 $Gen(X) = \{p \in X : p \text{ is generic}\}$
 $APer(X) = \{p \in X : p \text{ is almost periodic}\}$

- $APer(X) = \bigcup \{ \text{minimal subflows of } X \}$
- $APer(X) \neq \emptyset$
- WGen(X) = cl(APer(X))
- If $Gen(X) \neq \emptyset$, then Gen(X) = WGen(X) = APer(X)
- $Gen(X) \neq \emptyset$ iff there is just one minimal subflow of X.

- $APer(X) = \bigcup \{ \text{minimal subflows of } X \}$
- $APer(X) \neq \emptyset$
- WGen(X) = cl(APer(X))
- If $Gen(X) \neq \emptyset$, then Gen(X) = WGen(X) = APer(X)
- $Gen(X) \neq \emptyset$ iff there is just one minimal subflow of X.

- $APer(X) = \bigcup \{ \text{minimal subflows of } X \}$
- $APer(X) \neq \emptyset$
- WGen(X) = cl(APer(X))
- If $Gen(X) \neq \emptyset$, then Gen(X) = WGen(X) = APer(X)
- $Gen(X) \neq \emptyset$ iff there is just one minimal subflow of X.

- $APer(X) = \bigcup \{ \text{minimal subflows of } X \}$
- $APer(X) \neq \emptyset$
- WGen(X) = cl(APer(X))
- If $Gen(X) \neq \emptyset$, then Gen(X) = WGen(X) = APer(X)

• $Gen(X) \neq \emptyset$ iff there is just one minimal subflow of X.

- $APer(X) = \bigcup \{ \text{minimal subflows of } X \}$
- $APer(X) \neq \emptyset$
- WGen(X) = cl(APer(X))
- If $Gen(X) \neq \emptyset$, then Gen(X) = WGen(X) = APer(X)
- $Gen(X) \neq \emptyset$ iff there is just one minimal subflow of X.

Model theory

Let $Def_G(M) = \{ definable subsets of G \}.$

- $Def_G(M)$ is an algebra od sets, closed under left translation in G
- $S_G(M) = S(Def_G(M))$
- G acts on $S_G(M)$ by left translation:

$$g \cdot p = \{\varphi(g^{-1} \cdot x) : \varphi(x) \in p\}$$

- S_G(M) is a point-transitive G-flow, the set {tp(g/M : g ∈ G} is a dense orbit.
- $p \in S_G(M)$ is a generic type iff p is a generic point in the G-flow $S_G(M)$.

Model theory

Let $Def_G(M) = \{ definable \text{ subsets of } G \}.$

- $Def_G(M)$ is an algebra od sets, closed under left translation in G
- $S_G(M) = S(Def_G(M))$

• G acts on $S_G(M)$ by left translation:

$$g \cdot p = \{\varphi(g^{-1} \cdot x) : \varphi(x) \in p\}$$

- $S_G(M)$ is a point-transitive *G*-flow, the set $\{tp(g/M : g \in G\}$ is a dense orbit.
- $p \in S_G(M)$ is a generic type iff p is a generic point in the G-flow $S_G(M)$.

Model theory

Let $Def_G(M) = \{ definable subsets of G \}.$

- $Def_G(M)$ is an algebra od sets, closed under left translation in G
- $S_G(M) = S(Def_G(M))$
- G acts on $S_G(M)$ by left translation:

$$g \cdot p = \{\varphi(g^{-1} \cdot x) : \varphi(x) \in p\}$$

- $S_G(M)$ is a point-transitive *G*-flow, the set $\{tp(g/M : g \in G\}$ is a dense orbit.
- $p \in S_G(M)$ is a generic type iff p is a generic point in the G-flow $S_G(M)$.

Let $Def_G(M) = \{ definable \text{ subsets of } G \}.$

- $Def_G(M)$ is an algebra od sets, closed under left translation in G
- $S_G(M) = S(Def_G(M))$
- G acts on $S_G(M)$ by left translation:

$$g \cdot p = \{\varphi(g^{-1} \cdot x) : \varphi(x) \in p\}$$

- $S_G(M)$ is a point-transitive *G*-flow, the set $\{tp(g/M : g \in G\}$ is a dense orbit.
- $p \in S_G(M)$ is a generic type iff p is a generic point in the G-flow $S_G(M)$.

Let $Def_G(M) = \{ definable \text{ subsets of } G \}.$

- $Def_G(M)$ is an algebra od sets, closed under left translation in G
- $S_G(M) = S(Def_G(M))$
- G acts on $S_G(M)$ by left translation:

$$g \cdot p = \{\varphi(g^{-1} \cdot x) : \varphi(x) \in p\}$$

- $S_G(M)$ is a point-transitive *G*-flow, the set $\{tp(g/M : g \in G\}$ is a dense orbit.
- $p \in S_G(M)$ is a generic type iff p is a generic point in the G-flow $S_G(M)$.

Let $Def_G(M) = \{ definable \text{ subsets of } G \}.$

- $Def_G(M)$ is an algebra od sets, closed under left translation in G
- $S_G(M) = S(Def_G(M))$
- G acts on $S_G(M)$ by left translation:

$$g \cdot p = \{\varphi(g^{-1} \cdot x) : \varphi(x) \in p\}$$

- S_G(M) is a point-transitive G-flow, the set {tp(g/M : g ∈ G} is a dense orbit.
- *p* ∈ S_G(M) is a generic type iff *p* is a generic point in the G-flow S_G(M).

Let $Def_G(M) = \{ definable \text{ subsets of } G \}.$

- $Def_G(M)$ is an algebra od sets, closed under left translation in G
- $S_G(M) = S(Def_G(M))$
- G acts on $S_G(M)$ by left translation:

$$g \cdot p = \{\varphi(g^{-1} \cdot x) : \varphi(x) \in p\}$$

- S_G(M) is a point-transitive G-flow, the set {tp(g/M : g ∈ G} is a dense orbit.
- *p* ∈ S_G(M) is a generic type iff *p* is a generic point in the G-flow S_G(M).

A⊒ ▶ ∢ ∃ ▶

Let $Def_G(M) = \{ definable \text{ subsets of } G \}.$

- $Def_G(M)$ is an algebra od sets, closed under left translation in G
- $S_G(M) = S(Def_G(M))$
- G acts on $S_G(M)$ by left translation:

$$g \cdot p = \{\varphi(g^{-1} \cdot x) : \varphi(x) \in p\}$$

- S_G(M) is a point-transitive G-flow, the set {tp(g/M : g ∈ G} is a dense orbit.
- $p \in S_G(M)$ is a generic type iff p is a generic point in the G-flow $S_G(M)$.

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a point-transitive *G*-flow: 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$ 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- \circ is continuous on E(X), in the first coordinate.

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- cl is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a point-transitive *G*-flow: 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$ 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- \circ is continuous on E(X), in the first coordinate.

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a point-transitive G-flow:
 1. for f ∈ E(X) and g ∈ G, g * f = π_g ∘ f
 2. {π_g : g ∈ G} is a dense G-orbit.
- \circ is continuous on E(X), in the first coordinate.

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a point-transitive *G*-flow: 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$ 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- ○ is continuous on E(X), in the first coordinate.

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a point-transitive G-flow:
 1. for f ∈ E(X) and g ∈ G, g * f = π_g ∘ f
 2. {π_g : g ∈ G} is a dense G-orbit.
- \circ is continuous on E(X), in the first coordinate.

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a point-transitive *G*-flow: 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$ 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- ○ is continuous on E(X), in the first coordinate.

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a point-transitive *G*-flow: 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$ 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- • is continuous on E(X), in the first coordinate.

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a point-transitive *G*-flow: 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$ 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- \circ is continuous on E(X), in the first coordinate.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

Sometimes $X \cong E(X)$, as *G*-flows. For example, $E(S_G(M)) \cong S_G(M)$, as *G*-flows and semigroups.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and

I is a union of its ideal subgroups.

- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

Let $\mathcal{A} \subseteq \mathcal{P}(G)$ be a G-algebra of sets

(i.e. closed under left translation in G). Then $S(\mathcal{A})$ is a G-flow. For $p \in S(\mathcal{A})$ we define $d_p : \mathcal{A} \to \mathcal{P}(G)$ by

$$d_p(U) = \{g \in G : g^{-1}U \in p\}$$

Definition

 \mathcal{A} is *d*-closed if \mathcal{A} is closed under d_p for every $p \in S(\mathcal{A})$.

Example

Let $\mathcal{A} \subseteq \mathcal{P}(G)$ be a *G*-algebra of sets (i.e. closed under left translation in *G*). Then $S(\mathcal{A})$ is a *G*-flow. For $p \in S(\mathcal{A})$ we define $d_p : \mathcal{A} \to \mathcal{P}(G)$ by:

$$d_p(U) = \{g \in G : g^{-1}U \in p\}$$

Definition

 \mathcal{A} is *d*-closed if \mathcal{A} is closed under d_p for every $p \in S(\mathcal{A})$.

Example

Let $\mathcal{A} \subseteq \mathcal{P}(G)$ be a *G*-algebra of sets (i.e. closed under left translation in *G*). Then $S(\mathcal{A})$ is a *G*-flow.

For $p \in S(\mathcal{A})$ we define $d_p : \mathcal{A} \to \mathcal{P}(G)$ by:

$$d_p(U) = \{g \in G : g^{-1}U \in p\}$$

Definition

 \mathcal{A} is *d*-closed if \mathcal{A} is closed under d_p for every $p \in S(\mathcal{A})$.

Example

Let $\mathcal{A} \subseteq \mathcal{P}(G)$ be a *G*-algebra of sets (i.e. closed under left translation in *G*). Then $S(\mathcal{A})$ is a *G*-flow. For $p \in S(\mathcal{A})$ we define $d_p : \mathcal{A} \to \mathcal{P}(G)$ by:

 $d_p(U) = \{g \in G : g^{-1}U \in p\}$

Definition

 \mathcal{A} is *d*-closed if \mathcal{A} is closed under d_p for every $p \in S(\mathcal{A})$.

Example

Let $\mathcal{A} \subseteq \mathcal{P}(G)$ be a *G*-algebra of sets (i.e. closed under left translation in *G*). Then $S(\mathcal{A})$ is a *G*-flow. For $p \in S(\mathcal{A})$ we define $d_p : \mathcal{A} \to \mathcal{P}(G)$ by:

$$d_p(U) = \{g \in G : g^{-1}U \in p\}$$

Definition

 \mathcal{A} is *d*-closed if \mathcal{A} is closed under d_p for every $p \in S(\mathcal{A})$.

Example

Let $\mathcal{A} \subseteq \mathcal{P}(G)$ be a *G*-algebra of sets (i.e. closed under left translation in *G*). Then $S(\mathcal{A})$ is a *G*-flow. For $p \in S(\mathcal{A})$ we define $d_p : \mathcal{A} \to \mathcal{P}(G)$ by:

$$d_p(U) = \{g \in G : g^{-1}U \in p\}$$

Definition

 \mathcal{A} is *d*-closed if \mathcal{A} is closed under d_p for every $p \in S(\mathcal{A})$.

Example

Let $\mathcal{A} \subseteq \mathcal{P}(G)$ be a *G*-algebra of sets (i.e. closed under left translation in *G*). Then $S(\mathcal{A})$ is a *G*-flow. For $p \in S(\mathcal{A})$ we define $d_p : \mathcal{A} \to \mathcal{P}(G)$ by:

$$d_p(U) = \{g \in G : g^{-1}U \in p\}$$

Definition

 \mathcal{A} is *d*-closed if \mathcal{A} is closed under d_p for every $p \in S(\mathcal{A})$.

Example

Assume A is *d*-closed.

• For $p \in S(\mathcal{A})$, $d_p \in End(\mathcal{A}) := \{G \text{-endomorphisms of } \mathcal{A}\}$.

• Let $d: S(\mathcal{A}) \to End(\mathcal{A})$ map p to d_p . Then d is a bijection.

• d induces * on $S(\mathcal{A})$ so that

$$d: (S(\mathcal{A}), *) \stackrel{\cong}{\rightarrow} (End(\mathcal{A}), \circ)$$

Theorem 2

$$(E(S(\mathcal{A})), \circ) \cong^1 (S(\mathcal{A}), *) \cong^2 (End(\mathcal{A}), \circ)$$

Proof

1. For $p \in S(\mathcal{A})$ let $l_p(q) = p * q$. Then $l_p \in E(S(\mathcal{A}))$ and $p \mapsto l_p$ gives \cong^1 . 2. This is d.

3.1

Assume A is *d*-closed.

- For $p \in S(\mathcal{A})$, $d_p \in End(\mathcal{A}) := \{G\text{-endomorphisms of } \mathcal{A}\}$.
- Let $d: S(\mathcal{A}) \to End(\mathcal{A})$ map p to d_p . Then d is a bijection.

• *d* induces * on $S(\mathcal{A})$ so that

$$d:(S(\mathcal{A}),*)\stackrel{\cong}{\rightarrow}(End(\mathcal{A}),\circ)$$

Theorem 2

$$(E(S(\mathcal{A})), \circ) \cong^1 (S(\mathcal{A}), *) \cong^2 (End(\mathcal{A}), \circ)$$

Proof

1. For $p \in S(\mathcal{A})$ let $l_p(q) = p * q$. Then $l_p \in E(S(\mathcal{A}))$ and $p \mapsto l_p$ gives \cong^1 . 2. This is d.

Assume A is *d*-closed.

- For $p \in S(\mathcal{A})$, $d_p \in End(\mathcal{A}) := \{G \text{-endomorphisms of } \mathcal{A}\}$.
- Let $d: S(\mathcal{A}) \to End(\mathcal{A})$ map p to d_p . Then d is a bijection.

• d induces * on $S(\mathcal{A})$ so that

$$d: (S(\mathcal{A}), *) \stackrel{\cong}{\rightarrow} (End(\mathcal{A}), \circ)$$

Theorem 2

$$(E(S(\mathcal{A})), \circ) \cong^1 (S(\mathcal{A}), *) \cong^2 (End(\mathcal{A}), \circ)$$

Proof

1. For $p \in S(\mathcal{A})$ let $l_p(q) = p * q$. Then $l_p \in E(S(\mathcal{A}))$ and $p \mapsto l_p$ gives \cong^1 . 2. This is d.

Assume A is *d*-closed.

- For $p \in S(\mathcal{A})$, $d_p \in End(\mathcal{A}) := \{G \text{-endomorphisms of } \mathcal{A}\}$.
- Let $d: S(\mathcal{A}) \to End(\mathcal{A})$ map p to d_p . Then d is a bijection.
- d induces * on $S(\mathcal{A})$ so that

$$d: (S(\mathcal{A}), *) \stackrel{\cong}{\rightarrow} (End(\mathcal{A}), \circ)$$

Theorem 2

$$(E(S(\mathcal{A})), \circ) \cong^1 (S(\mathcal{A}), *) \cong^2 (End(\mathcal{A}), \circ)$$

Proof

1. For $p \in S(\mathcal{A})$ let $l_p(q) = p * q$. Then $l_p \in E(S(\mathcal{A}))$ and $p \mapsto l_p$ gives \cong^1 . 2. This is d.

Assume A is *d*-closed.

- For $p \in S(\mathcal{A})$, $d_p \in End(\mathcal{A}) := \{G \text{-endomorphisms of } \mathcal{A}\}$.
- Let $d: S(\mathcal{A}) \to End(\mathcal{A})$ map p to d_p . Then d is a bijection.
- d induces * on $S(\mathcal{A})$ so that

$$d: (S(\mathcal{A}), *) \stackrel{\cong}{\rightarrow} (End(\mathcal{A}), \circ)$$

Theorem 2

$$(E(S(\mathcal{A})), \circ) \cong^1 (S(\mathcal{A}), *) \cong^2 (End(\mathcal{A}), \circ)$$

Proof

1. For
$$p \in S(\mathcal{A})$$
 let $l_p(q) = p * q$.
Then $l_p \in E(S(\mathcal{A}))$ and $p \mapsto l_p$ gives \cong^1 .
2. This is d .

э

Assume A is *d*-closed.

- For $p \in S(\mathcal{A})$, $d_p \in End(\mathcal{A}) := \{G \text{-endomorphisms of } \mathcal{A}\}$.
- Let $d: S(\mathcal{A}) \to End(\mathcal{A})$ map p to d_p . Then d is a bijection.
- d induces * on $S(\mathcal{A})$ so that

$$d: (S(\mathcal{A}), *) \stackrel{\cong}{\rightarrow} (End(\mathcal{A}), \circ)$$

Theorem 2

$$(E(S(\mathcal{A})), \circ) \cong^1 (S(\mathcal{A}), *) \cong^2 (End(\mathcal{A}), \circ)$$

Proof

1. For
$$p \in S(\mathcal{A})$$
 let $l_p(q) = p * q$.
Then $l_p \in E(S(\mathcal{A}))$ and $p \mapsto l_p$ gives \cong^1 .
2. This is d .

э

- 4 同 6 4 日 6 4 日 6

Functional representation

Assume A is *d*-closed.

- For $p \in S(\mathcal{A})$, $d_p \in End(\mathcal{A}) := \{G \text{-endomorphisms of } \mathcal{A}\}$.
- Let $d: S(\mathcal{A}) \to End(\mathcal{A})$ map p to d_p . Then d is a bijection.
- d induces * on $S(\mathcal{A})$ so that

$$d: (S(\mathcal{A}), *) \stackrel{\cong}{\rightarrow} (End(\mathcal{A}), \circ)$$

Theorem 2

$$(E(S(\mathcal{A})), \circ) \cong^1 (S(\mathcal{A}), *) \cong^2 (End(\mathcal{A}), \circ)$$

Proof

1. For
$$p \in S(\mathcal{A})$$
 let $l_p(q) = p * q$.
Then $l_p \in E(S(\mathcal{A}))$ and $p \mapsto l_p$ gives \cong^1 .
2. This is d .

э

- 4 同 6 4 日 6 4 日 6

Functional representation

Assume A is *d*-closed.

- For $p \in S(\mathcal{A})$, $d_p \in End(\mathcal{A}) := \{G \text{-endomorphisms of } \mathcal{A}\}$.
- Let $d: S(\mathcal{A}) \to End(\mathcal{A})$ map p to d_p . Then d is a bijection.
- d induces * on $S(\mathcal{A})$ so that

$$d: (S(\mathcal{A}), *) \stackrel{\cong}{\rightarrow} (End(\mathcal{A}), \circ)$$

Theorem 2

$$(E(S(\mathcal{A})), \circ) \cong^1 (S(\mathcal{A}), *) \cong^2 (End(\mathcal{A}), \circ)$$

Proof

1. For
$$p \in S(\mathcal{A})$$
 let $l_p(q) = p * q$.
Then $l_p \in E(S(\mathcal{A}))$ and $p \mapsto l_p$ gives \cong^1 .
2. This is d .

э

- 4 同 6 4 日 6 4 日 6

Example

If $\mathcal{A} = Def_G(M)$ then \mathcal{A} is *d*-closed and * on $S_G(M) = S(\mathcal{A})$ from Theorem 2 is just the free multiplication of *G*-types.

Example

If $\mathcal{A} = Def_G(M)$ then \mathcal{A} is *d*-closed and * on $S_G(M) = S(\mathcal{A})$ from Theorem 2 is just the free multiplication of *G*-types.

Definition

 Δ ⊆ L is invariant if the family of relatively Δ-definable subsets of G is closed under left and right translation in G.
 Let Inv = {Δ ⊆_{fin} L : Δ is invariant}.

Fact

```
Inv is cofinal in [L]^{<\omega}.
```

Let $\Delta \in Inv$.

Notation

 $Def_{G,\Delta} = \{ relatively \Delta - definable subsets of G \}$

 $S_{G,\Delta} = S(Def_{G,\Delta}(M)),$

Definition

 Δ ⊆ L is invariant if the family of relatively Δ-definable subsets of G is closed under left and right translation in G.
 Let Inv = {Δ ⊆_{fin} L : Δ is invariant}.

Fact

```
Inv is cofinal in [L]^{<\omega}
```

Let $\Delta \in Inv$.

Notation

 $Def_{G,\Delta} = \{ relatively \Delta - definable subsets of G \}$

 $S_{G,\Delta} = S(Def_{G,\Delta}(M)),$

Definition

1. $\Delta \subseteq L$ is invariant if the family of relatively Δ -definable subsets of *G* is closed under left and right translation in *G*.

2. Let $Inv = \{\Delta \subseteq_{fin} L : \Delta \text{ is invariant}\}.$

Fact

```
Inv is cofinal in [L]^{<\omega}
```

Let $\Delta \in Inv$.

Notation

 $Def_{G,\Delta} = \{ relatively \Delta - definable subsets of G \}$

 $S_{G,\Delta} = S(Def_{G,\Delta}(M)),$

Definition

Δ ⊆ L is invariant if the family of relatively Δ-definable subsets of G is closed under left and right translation in G.
 Let Inv = {Δ ⊆_{fin} L : Δ is invariant}.

Fact

```
Inv is cofinal in [L]^{<\omega}
```

Let $\Delta \in Inv$.

Notation

 $Def_{G,\Delta} = \{ relatively \Delta - definable subsets of G \}$

 $S_{G,\Delta} = S(Def_{G,\Delta}(M)),$

Definition

Δ ⊆ L is invariant if the family of relatively Δ-definable subsets of G is closed under left and right translation in G.
 Let Inv = {Δ ⊆_{fin} L : Δ is invariant}.

Fact

```
Inv is cofinal in [L]^{<\omega}.
```

Let $\Delta \in Inv$.

Notation

 $Def_{G,\Delta} = \{ relatively \Delta - definable subsets of G \}$

 $S_{G,\Delta} = S(Def_{G,\Delta}(M)),$

Definition

Δ ⊆ L is invariant if the family of relatively Δ-definable subsets of G is closed under left and right translation in G.
 Let Inv = {Δ ⊆_{fin} L : Δ is invariant}.

Fact

```
Inv is cofinal in [L]^{<\omega}.
```

Let $\Delta \in Inv$.

Notation

 $Def_{G,\Delta} = \{ relatively \Delta - definable subsets of G \}$

 $S_{G,\Delta} = S(Def_{G,\Delta}(M)),$

Definition

Δ ⊆ L is invariant if the family of relatively Δ-definable subsets of G is closed under left and right translation in G.
 Let Inv = {Δ ⊆_{fin} L : Δ is invariant}.

Fact

```
Inv is cofinal in [L]^{<\omega}.
```

Let $\Delta \in Inv$.

Notation

 $Def_{G,\Delta} = \{ relatively \Delta - definable subsets of G \}$

 $S_{G,\Delta} = S(Def_{G,\Delta}(M)),$

Definition

Δ ⊆ L is invariant if the family of relatively Δ-definable subsets of G is closed under left and right translation in G.
 Let Inv = {Δ ⊆_{fin} L : Δ is invariant}.

Fact

```
Inv is cofinal in [L]^{<\omega}.
```

Let $\Delta \in Inv$.

Notation

 $Def_{G,\Delta} = \{ \text{relatively } \Delta \text{-definable subsets of } G \}$

$$S_{G,\Delta} = S(Def_{G,\Delta}(M)),$$

Definition

Δ ⊆ L is invariant if the family of relatively Δ-definable subsets of G is closed under left and right translation in G.
 Let Inv = {Δ ⊆_{fin} L : Δ is invariant}.

Fact

```
Inv is cofinal in [L]^{<\omega}.
```

Let $\Delta \in Inv$.

Notation

 $Def_{G,\Delta} = \{ \text{relatively } \Delta \text{-definable subsets of } G \}$

$$S_{G,\Delta} = S(Def_{G,\Delta}(M)),$$

- Def_{G,Δ}(M) is a d-closed G-algebra of sets.
 (this relies on the full definability lemma in local stability theory)
- ② (S_{G,∆}(M), *) ≅ (E(S_{G,∆}(M)), ◦) ≅ (End(Def_{G,∆}(M)), ◦) (this is by Theorem 2)

$$Def_G(M) = \bigcup_{\Delta \in Inv} Def_{G,\Delta}(M)$$

(S_{G,∆}(M), ∆ ∈ Inv) is an inverse system of G- flows and semi-groups
 (the connecting functions are restrictions)

 $S_G(M) = invlim_{\Lambda \in Inv} S_G \Lambda(M)$

(as *G*-flows and semigroups)

- Def_{G,\Delta}(M) is a d-closed G-algebra of sets.
 (this relies on the full definability lemma in local stability theory)
- ② $(S_{G,\Delta}(M), *) \cong (E(S_{G,\Delta}(M)), \circ) \cong (End(Def_{G,\Delta}(M)), \circ)$ (this is by Theorem 2)

$$Def_G(M) = \bigcup_{\Delta \in Inv} Def_{G,\Delta}(M)$$

(S_{G,∆}(M), ∆ ∈ Inv) is an inverse system of G- flows and semi-groups
 (the connection functions are restrictions)

(the connecting functions are restrictions)

 S_G(M) = invlim_{∆∈Inv}S_{G,∆}(M) (as G-flows and semigroups)

- Def_{G,\Delta}(M) is a d-closed G-algebra of sets.
 (this relies on the full definability lemma in local stability theory)
- (S_{G,∆}(M), *) ≅ (E(S_{G,∆}(M)), ◦) ≅ (End(Def_{G,∆}(M)), ◦) (this is by Theorem 2)

$$Def_G(M) = \bigcup_{\Delta \in Inv} Def_{G,\Delta}(M)$$

- (S_{G,∆}(M), ∆ ∈ Inv) is an inverse system of G- flows and semi-groups
 (the connecting functions are restrictions)
- $S_G(M) = invlim_{\Delta \in Inv}S_{G,\Delta}(M)$ (as *G*-flows and semigroups)

- Def_{G,\Delta}(M) is a d-closed G-algebra of sets.
 (this relies on the full definability lemma in local stability theory)
- (S_{G,∆}(M), *) ≃ (E(S_{G,∆}(M)), ◦) ≃ (End(Def_{G,∆}(M)), ◦) (this is by Theorem 2)

$$Def_G(M) = \bigcup_{\Delta \in Inv} Def_{G,\Delta}(M)$$

(S_{G,∆}(M), ∆ ∈ Inv) is an inverse system of G- flows and semi-groups

(the connecting functions are restrictions)

 S_G(M) = invlim_{∆∈Inv}S_{G,∆}(M) (as G-flows and semigroups)

伺 ト イ ヨ ト イ ヨ ト

- Def_{G,\Delta}(M) is a d-closed G-algebra of sets.
 (this relies on the full definability lemma in local stability theory)
- (S_{G,∆}(M), *) ≃ (E(S_{G,∆}(M)), ◦) ≃ (End(Def_{G,∆}(M)), ◦)
 (this is by Theorem 2)

$$Def_G(M) = \bigcup_{\Delta \in \mathit{Inv}} \mathit{Def}_{G,\Delta}(M)$$

⟨S_{G,∆}(M), ∆ ∈ Inv⟩ is an inverse system of G- flows and semi-groups

(the connecting functions are restrictions)

 S_G(M) = invlim_{∆∈Inv}S_{G,∆}(M) (as G-flows and semigroups)

3

伺 ト イ ヨ ト イ ヨ ト

- Def_{G,\Delta}(M) is a d-closed G-algebra of sets.
 (this relies on the full definability lemma in local stability theory)
- (S_{G,∆}(M), *) ≃ (E(S_{G,∆}(M)), ◦) ≃ (End(Def_{G,∆}(M)), ◦)
 (this is by Theorem 2)

$$Def_G(M) = \bigcup_{\Delta \in Inv} Def_{G,\Delta}(M)$$

 ⟨S_{G,∆}(M), ∆ ∈ Inv⟩ is an inverse system of G- flows and semi-groups

(the connecting functions are restrictions)

 S_G(M) = invlim_{∆∈Inv}S_{G,∆}(M) (as G-flows and semigroups)

3

通 と イ ヨ と イ ヨ と

- Def_{G,\Delta}(M) is a d-closed G-algebra of sets.
 (this relies on the full definability lemma in local stability theory)
- (S_{G,∆}(M), *) ≃ (E(S_{G,∆}(M)), ◦) ≃ (End(Def_{G,∆}(M)), ◦) (this is by Theorem 2)

$$Def_G(M) = \bigcup_{\Delta \in Inv} Def_{G,\Delta}(M)$$

- ⟨S_{G,∆}(M), ∆ ∈ Inv⟩ is an inverse system of G- flows and semi-groups
 (the connecting functions are restrictions)
- S_G(M) = invlim_{∆∈Inv}S_{G,∆}(M) (as G-flows and semigroups)

3

ヨッ イヨッ イヨッ

- Def_{G,\Delta}(M) is a d-closed G-algebra of sets.
 (this relies on the full definability lemma in local stability theory)
- (S_{G,∆}(M), *) ≃ (E(S_{G,∆}(M)), ◦) ≃ (End(Def_{G,∆}(M)), ◦)
 (this is by Theorem 2)

$$Def_G(M) = \bigcup_{\Delta \in Inv} Def_{G,\Delta}(M)$$

- ⟨S_{G,∆}(M), ∆ ∈ Inv⟩ is an inverse system of G- flows and semi-groups
 (the connecting functions are restrictions)
- $S_G(M) = invlim_{\Delta \in Inv} S_{G,\Delta}(M)$ (as *G*-flows and semigroups)

Commuting diagram

$(S_G(M),*) \xrightarrow{r} (S_{G,\Delta}(M),*)$ $\downarrow^{\cong} \qquad \downarrow^{d} \downarrow^{\cong}$ $End(Def_G(M),\circ) \xrightarrow{r} End(Def_{G,\Delta}(M),\circ)$

The horizontal arrows are restrictions. All arrows are semigroup homomorphisms

Commuting diagram

$$(S_G(M), *) \xrightarrow{r} (S_{G,\Delta}(M), *)$$

$$d \downarrow \cong d \downarrow \cong$$

$$End(Def_G(M), \circ) \xrightarrow{r} End(Def_{G,\Delta}(M), \circ)$$

The horizontal arrows are restrictions.

All arrows are semigroup homomorphisms.

$$(S_G(M), *) \xrightarrow{r} (S_{G,\Delta}(M), *)$$

$$\downarrow^{\cong} d \downarrow^{\cong}$$

$$End(Def_G(M), \circ) \xrightarrow{r} End(Def_{G,\Delta}(M), \circ)$$

The horizontal arrows are restrictions. All arrows are semigroup homomorphisms.

 $(S_{G,\Delta}(M), *)$ is a type-definable semigroup (in M^{eq}).

Proof.

- S_{G,Δ}(M) is a type-definable set in M^{eq} (identify p ∈ S_{G,Δ}(M) with the tuple of canonical φ-definitions of p, φ ∈ Δ)
- ∗ is relatively definable on S_{G,∆}(M). (Use d : S_{G,∆}(M) ≅ End(Def_{G,∆}(M)), the full definability lemma and compactness. Def_{G,∆}(M) is ind-definable in M^{eq}.)

/∰ ▶ < ∃ ▶

 $(S_{G,\Delta}(M), *)$ is a type-definable semigroup (in M^{eq}).

Proof.

- S_{G,Δ}(M) is a type-definable set in M^{eq} (identify p ∈ S_{G,Δ}(M) with the tuple of canonical φ-definitions of p, φ ∈ Δ)
- ∗ is relatively definable on S_{G,∆}(M). (Use d : S_{G,∆}(M) ≅ End(Def_{G,∆}(M)), the full definability lemma and compactness. Def_{G,∆}(M) is ind-definable in M^{eq}.)

 $(S_{G,\Delta}(M), *)$ is a type-definable semigroup (in M^{eq}).

Proof.

- S_{G,Δ}(M) is a type-definable set in M^{eq} (identify p ∈ S_{G,Δ}(M) with the tuple of canonical φ-definitions of p, φ ∈ Δ)
- ∗ is relatively definable on S_{G,∆}(M). (Use d : S_{G,∆}(M) ≅ End(Def_{G,∆}(M)), the full definability lemma and compactness. Def_{G,∆}(M) is ind-definable in M^{eq}.)

 $(S_{G,\Delta}(M), *)$ is a type-definable semigroup (in M^{eq}).

Proof.

- S_{G,Δ}(M) is a type-definable set in M^{eq} (identify p ∈ S_{G,Δ}(M) with the tuple of canonical φ-definitions of p, φ ∈ Δ)
- ∗ is relatively definable on S_{G,∆}(M). (Use d : S_{G,∆}(M) ≅ End(Def_{G,∆}(M)), the full definability lemma and compactness. Def_{G,∆}(M) is ind-definable in M^{eq}.)

伺 ト く ヨ ト く ヨ ト

 $(S_{G,\Delta}(M), *)$ is a type-definable semigroup (in M^{eq}).

Proof.

- S_{G,Δ}(M) is a type-definable set in M^{eq} (identify p ∈ S_{G,Δ}(M) with the tuple of canonical φ-definitions of p, φ ∈ Δ)
- * is relatively definable on S_{G,∆}(M). (Use d : S_{G,∆}(M) ≅ End(Def_{G,∆}(M)), the full definability lemma and compactness. Def_{G,∆}(M) is ind-definable in M^{eq}.)

/∰ ▶ < ∃ ▶

 $(S_{G,\Delta}(M), *)$ is a type-definable semigroup (in M^{eq}).

Proof.

- S_{G,Δ}(M) is a type-definable set in M^{eq} (identify p ∈ S_{G,Δ}(M) with the tuple of canonical φ-definitions of p, φ ∈ Δ)
- * is relatively definable on $S_{G,\Delta}(M)$. (Use $d : S_{G,\Delta}(M) \cong End(Def_{G,\Delta}(M))$, the full definability lemma and compactness.

 $Def_{G,\Delta}(M)$ is ind-definable in M^{eq} .)

伺 ト く ヨ ト く ヨ ト

 $(S_{G,\Delta}(M), *)$ is a type-definable semigroup (in M^{eq}).

Proof.

- S_{G,Δ}(M) is a type-definable set in M^{eq} (identify p ∈ S_{G,Δ}(M) with the tuple of canonical φ-definitions of p, φ ∈ Δ)
- * is relatively definable on S_{G,∆}(M). (Use d : S_{G,∆}(M) ≅ End(Def_{G,∆}(M)), the full definability lemma and compactness. Def_{G,∆}(M) is ind-definable in M^{eq}.)

Assume $f \in End(A)$.

$$Ker(f) = \{U \in \mathcal{A} : f(U) = \emptyset\}$$

$$Im(f) = \{f(U) : U \in \mathcal{A}\}$$

•
$$Ker(f)$$
 is a *G*-ideal in A .

•
$$Im(f)$$
 is a *G*-subalgebra of A .

Crucial point

Assume $f, g \in End(A)$. Then

$Ker(f \circ g) \supseteq Ker(g)$ and $Im(f \circ g) \subseteq Im(f)$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assume $f \in End(A)$.

$$Ker(f) = \{U \in \mathcal{A} : f(U) = \emptyset\}$$

$$Im(f) = \{f(U) : U \in \mathcal{A}\}$$

- Ker(f) is a *G*-ideal in A.
- Im(f) is a *G*-subalgebra of A.

Crucial point

Assume $f, g \in End(A)$. Then

 $Ker(f \circ g) \supseteq Ker(g)$ and $Im(f \circ g) \subseteq Im(f)$

Assume $f \in End(A)$.

$${\sf Ker}(f) = \{U \in {\cal A} : f(U) = \emptyset\}$$

$$Im(f) = \{f(U) : U \in \mathcal{A}\}$$

• Ker(f) is a *G*-ideal in A.

• Im(f) is a *G*-subalgebra of A.

Crucial point

Assume $f, g \in End(\mathcal{A})$. Then

 $Ker(f \circ g) \supseteq Ker(g)$ and $Im(f \circ g) \subseteq Im(f)$

Assume $f \in End(A)$.

$$Ker(f) = \{U \in \mathcal{A} : f(U) = \emptyset\}$$

$$Im(f) = \{f(U) : U \in A\}$$

•
$$Ker(f)$$
 is a *G*-ideal in A .

•
$$Im(f)$$
 is a *G*-subalgebra of A .

Crucial point

Assume $f, g \in End(A)$. Then

$Ker(f \circ g) \supseteq Ker(g)$ and $Im(f \circ g) \subseteq Im(f)$

・ロト ・同ト ・ヨト ・ヨト

Assume $f \in End(A)$.

$$Ker(f) = \{U \in \mathcal{A} : f(U) = \emptyset\}$$

$$Im(f) = \{f(U) : U \in A\}$$

• Ker(f) is a *G*-ideal in A.

• Im(f) is a *G*-subalgebra of A.

Crucial point

Assume $f, g \in End(A)$. Then

 $Ker(f \circ g) \supseteq Ker(g)$ and $Im(f \circ g) \subseteq Im(f)$

Assume $f \in End(A)$.

$$Ker(f) = \{U \in \mathcal{A} : f(U) = \emptyset\}$$

$$Im(f) = \{f(U) : U \in A\}$$

•
$$Ker(f)$$
 is a *G*-ideal in A .

• Im(f) is a *G*-subalgebra of A.

Crucial point

Assume $f, g \in End(A)$. Then

$Ker(f \circ g) \supseteq Ker(g)$ and $Im(f \circ g) \subseteq Im(f)$

・ロト ・得ト ・ヨト ・ヨト

Assume $f \in End(A)$.

$$Ker(f) = \{U \in \mathcal{A} : f(U) = \emptyset\}$$

$$Im(f) = \{f(U) : U \in A\}$$

•
$$Ker(f)$$
 is a *G*-ideal in A .

• Im(f) is a *G*-subalgebra of A.

Crucial point

Assume $f, g \in End(\mathcal{A})$. Then

$Ker(f \circ g) \supseteq Ker(g)$ and $Im(f \circ g) \subseteq Im(f)$

(日)

Assume $f \in End(A)$.

$$Ker(f) = \{U \in \mathcal{A} : f(U) = \emptyset\}$$

$$Im(f) = \{f(U) : U \in A\}$$

•
$$Ker(f)$$
 is a *G*-ideal in A .

• Im(f) is a *G*-subalgebra of A.

Crucial point

Assume $f, g \in End(A)$. Then

$$Ker(f \circ g) \supseteq Ker(g)$$
 and $Im(f \circ g) \subseteq Im(f)$

▲ □ ▶ → □ ▶

Proposition

Assume that S is a subgroup of End(A). Then all $f \in S$ have a common kernel $K = K_S$ and common image $R = R_S$. Let $S_{K,R} = \{f \in End(A) : Ker(f) = K, Im(f) = R \text{ and } f|_R \text{ permutes } R\}$. Then $S_{K,R}$ is a maximal subgroup of End(A) containing S.

Let $\mathcal{I} = \{\text{ideal subgroups of } S(\mathcal{A})\}\$ $\mathcal{K} = \{\text{ kernels of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A})\}\$ $\mathcal{R} = \{\text{ images of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A})\}\$

Fact

The mapping $\mathcal{I} \ni S \mapsto \langle K_S, R_S \rangle \in \mathcal{K} \times \mathcal{R}$ is a bijection $\mathcal{I} \to \mathcal{K} \times \mathcal{R}$. The fibers of the surjective mapping $APer(S(\mathcal{A})) \ni p \mapsto Ker(d_p) \in \mathcal{K}$ are precisely the minimal subflows of $S(\mathcal{A})$.

Proposition

Assume that S is a subgroup of End(A). Then all $f \in S$ have a common kernel $K = K_S$ and common image $R = R_S$. Let $S_{K,R} = \{f \in End(A) : Ker(f) = K, Im(f) = R \text{ and } f|_R \text{ permutes } R\}$. Then $S_{K,R}$ is a maximal subgroup of End(A) containing S.

Let $\mathcal{I} = \{\text{ideal subgroups of } S(\mathcal{A})\}\$ $\mathcal{K} = \{\text{ kernels of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A})\}\$ $\mathcal{R} = \{\text{ images of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A})\}\$

Fact

The mapping $\mathcal{I} \ni S \mapsto \langle K_S, R_S \rangle \in \mathcal{K} \times \mathcal{R}$ is a bijection $\mathcal{I} \to \mathcal{K} \times \mathcal{R}$. The fibers of the surjective mapping $APer(S(\mathcal{A})) \ni p \mapsto Ker(d_p) \in \mathcal{K}$ are precisely the minimal subflows of $S(\mathcal{A})$.

(I) (m) (m) (m) (m)

Proposition

Assume that S is a subgroup of End(A). Then all $f \in S$ have a common kernel $K = K_S$ and common image $R = R_S$. Let $S_{K,R} = \{f \in End(A) : Ker(f) = K, Im(f) = R \text{ and } f|_R \text{ permutes } R\}$. Then $S_{K,R}$ is a maximal subgroup of End(A) containing S.

Let $\mathcal{I} = \{\text{ideal subgroups of } S(\mathcal{A})\}\$ $\mathcal{K} = \{\text{ kernels of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A})\}\$ $\mathcal{R} = \{\text{ images of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A})\}\$

Fact

The mapping $\mathcal{I} \ni S \mapsto \langle K_S, R_S \rangle \in \mathcal{K} \times \mathcal{R}$ is a bijection $\mathcal{I} \to \mathcal{K} \times \mathcal{R}$. The fibers of the surjective mapping $APer(S(\mathcal{A})) \ni p \mapsto Ker(d_p) \in \mathcal{K}$ are precisely the minimal subflows of $S(\mathcal{A})$.

(I) (m) (m) (m) (m)

Proposition

Assume that S is a subgroup of End(A). Then all $f \in S$ have a common kernel $K = K_S$ and common image $R = R_S$. Let $S_{K,R} = \{f \in End(A) : Ker(f) = K, Im(f) = R \text{ and } f|_R \text{ permutes } R\}$. Then $S_{K,R}$ is a maximal subgroup of End(A) containing S.

Let $\mathcal{I} = \{\text{ideal subgroups of } S(\mathcal{A})\}\$ $\mathcal{K} = \{\text{ kernels of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A})\}\$ $\mathcal{R} = \{\text{ images of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A})\}\$

Fact

The mapping $\mathcal{I} \ni S \mapsto \langle K_S, R_S \rangle \in \mathcal{K} \times \mathcal{R}$ is a bijection $\mathcal{I} \to \mathcal{K} \times \mathcal{R}$. The fibers of the surjective mapping $APer(S(\mathcal{A})) \ni p \mapsto Ker(d_p) \in \mathcal{K}$ are precisely the minimal subflows of $S(\mathcal{A})$.

(I) (m) (m) (m) (m)

Proposition

Assume that S is a subgroup of End(A). Then all $f \in S$ have a common kernel $K = K_S$ and common image $R = R_S$. Let $S_{K,R} = \{f \in End(A) : Ker(f) = K, Im(f) = R \text{ and } f|_R \text{ permutes } R\}$. Then $S_{K,R}$ is a maximal subgroup of End(A) containing S.

Let $\mathcal{I} = \{\text{ideal subgroups of } S(\mathcal{A})\}\$ $\mathcal{K} = \{\text{ kernels of ideal subgroups of } S(\mathcal{A}) \cong E$

 $\mathcal{R} = \{ \text{ images of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A}) \}$

Fact

The mapping $\mathcal{I} \ni S \mapsto \langle K_S, R_S \rangle \in \mathcal{K} \times \mathcal{R}$ is a bijection $\mathcal{I} \to \mathcal{K} \times \mathcal{R}$. The fibers of the surjective mapping $APer(S(\mathcal{A})) \ni p \mapsto Ker(d_p) \in \mathcal{K}$ are precisely the minimal subflows of $S(\mathcal{A})$.

Proposition

Assume that S is a subgroup of End(A). Then all $f \in S$ have a common kernel $K = K_S$ and common image $R = R_S$. Let $S_{K,R} = \{f \in End(A) : Ker(f) = K, Im(f) = R \text{ and } f|_R \text{ permutes } R\}$. Then $S_{K,R}$ is a maximal subgroup of End(A) containing S.

Let $\mathcal{I} = \{\text{ideal subgroups of } S(\mathcal{A})\}\$ $\mathcal{K} = \{\text{ kernels of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A})\}\$ $\mathcal{R} = \{\text{ images of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A})\}\$

Fact

The mapping $\mathcal{I} \ni S \mapsto \langle K_S, R_S \rangle \in \mathcal{K} \times \mathcal{R}$ is a bijection $\mathcal{I} \to \mathcal{K} \times \mathcal{R}$. The fibers of the surjective mapping $APer(S(\mathcal{A})) \ni p \mapsto Ker(d_p) \in \mathcal{K}$ are precisely the minimal subflows of $S(\mathcal{A})$.

Proposition

Assume that S is a subgroup of End(A). Then all $f \in S$ have a common kernel $K = K_S$ and common image $R = R_S$. Let $S_{K,R} = \{f \in End(A) : Ker(f) = K, Im(f) = R \text{ and } f|_R \text{ permutes } R\}$. Then $S_{K,R}$ is a maximal subgroup of End(A) containing S.

Let $\mathcal{I} = \{ \text{ideal subgroups of } S(\mathcal{A}) \}$ $\mathcal{K} = \{ \text{ kernels of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A}) \}$ $\mathcal{R} = \{ \text{ images of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A}) \}$

Fact

The mapping $\mathcal{I} \ni S \mapsto \langle K_S, R_S \rangle \in \mathcal{K} \times \mathcal{R}$ is a bijection $\mathcal{I} \to \mathcal{K} \times \mathcal{R}$. The fibers of the surjective mapping $APer(S(\mathcal{A})) \ni p \mapsto Ker(d_p) \in \mathcal{K}$ are precisely the minimal subflows of $S(\mathcal{A})$.

Proposition

Assume that S is a subgroup of End(A). Then all $f \in S$ have a common kernel $K = K_S$ and common image $R = R_S$. Let $S_{K,R} = \{f \in End(A) : Ker(f) = K, Im(f) = R \text{ and } f|_R \text{ permutes } R\}$. Then $S_{K,R}$ is a maximal subgroup of End(A) containing S.

Let $\mathcal{I} = \{ \text{ideal subgroups of } S(\mathcal{A}) \}$ $\mathcal{K} = \{ \text{ kernels of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A}) \}$ $\mathcal{R} = \{ \text{ images of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A}) \}$

Fact

The mapping $\mathcal{I} \ni S \mapsto \langle K_S, R_S \rangle \in \mathcal{K} \times \mathcal{R}$ is a bijection

 $\mathcal{I} \to \mathcal{K} \times \mathcal{R}.$ The fibers of the surjective mapping $APer(S(\mathcal{A})) \ni p \mapsto Ker(d_p) \in \mathcal{K}$ are precisely the minimal subflows of $S(\mathcal{A}).$

Proposition

Assume that S is a subgroup of End(A). Then all $f \in S$ have a common kernel $K = K_S$ and common image $R = R_S$. Let $S_{K,R} = \{f \in End(A) : Ker(f) = K, Im(f) = R \text{ and } f|_R \text{ permutes } R\}$. Then $S_{K,R}$ is a maximal subgroup of End(A) containing S.

Let $\mathcal{I} = \{ \text{ideal subgroups of } S(\mathcal{A}) \}$ $\mathcal{K} = \{ \text{ kernels of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A}) \}$ $\mathcal{R} = \{ \text{ images of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A}) \}$

Fact

The mapping $\mathcal{I} \ni S \mapsto \langle K_S, R_S \rangle \in \mathcal{K} \times \mathcal{R}$ is a bijection $\mathcal{I} \to \mathcal{K} \times \mathcal{R}$. The fibers of the surjective mapping $APer(S(\mathcal{A})) \ni p \mapsto Ker(d_p) \in \mathcal{K}$ are precisely the minimal subflows of $S(\mathcal{A})$.

A 100 P

Proposition

Assume that S is a subgroup of End(A). Then all $f \in S$ have a common kernel $K = K_S$ and common image $R = R_S$. Let $S_{K,R} = \{f \in End(A) : Ker(f) = K, Im(f) = R \text{ and } f|_R \text{ permutes } R\}$. Then $S_{K,R}$ is a maximal subgroup of End(A) containing S.

Let $\mathcal{I} = \{ \text{ideal subgroups of } S(\mathcal{A}) \}$ $\mathcal{K} = \{ \text{ kernels of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A}) \}$ $\mathcal{R} = \{ \text{ images of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A}) \}$

Fact

The mapping $\mathcal{I} \ni S \mapsto \langle K_S, R_S \rangle \in \mathcal{K} \times \mathcal{R}$ is a bijection $\mathcal{I} \to \mathcal{K} \times \mathcal{R}$. The fibers of the surjective mapping $APer(S(\mathcal{A})) \ni p \mapsto Ker(d_p) \in \mathcal{K}$ are precisely the minimal subflows of $S(\mathcal{A})$.

Proposition

Assume that S is a subgroup of End(A). Then all $f \in S$ have a common kernel $K = K_S$ and common image $R = R_S$. Let $S_{K,R} = \{f \in End(A) : Ker(f) = K, Im(f) = R \text{ and } f|_R \text{ permutes } R\}$. Then $S_{K,R}$ is a maximal subgroup of End(A) containing S.

Let $\mathcal{I} = \{ \text{ideal subgroups of } S(\mathcal{A}) \}$ $\mathcal{K} = \{ \text{ kernels of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A}) \}$ $\mathcal{R} = \{ \text{ images of ideal subgroups of } S(\mathcal{A}) \cong End(\mathcal{A}) \}$

Fact

The mapping $\mathcal{I} \ni S \mapsto \langle K_S, R_S \rangle \in \mathcal{K} \times \mathcal{R}$ is a bijection $\mathcal{I} \to \mathcal{K} \times \mathcal{R}$. The fibers of the surjective mapping $APer(S(\mathcal{A})) \ni p \mapsto Ker(d_p) \in \mathcal{K}$ are precisely the minimal subflows of $S(\mathcal{A})$.

Example

Let H < G be Δ -definable, Δ -connected (i.e. $Mlt_{\Delta}(H) = 1$) (So: $\exists ! p_H \in S_{G,\Delta}(M)$ generic of H.) Let $N = N_G(H) < G$ and $S_{p_H} = \{n \cdot p_H : n \in N\} \subseteq S_{G,\Delta}(M)$. Then S_{p_H} is a maximal subgroup of $S_{G,\Delta}(M)$ and $S_{p_H} \cong_{def} N/H$.

Theorem 3

Example

Let H < G be Δ -definable, Δ -connected (i.e. $Mlt_{\Delta}(H) = 1$) (So: $\exists ! p_H \in S_{G,\Delta}(M)$ generic of H.) Let $N = N_G(H) < G$ and $S_{p_H} = \{n \cdot p_H : n \in N\} \subseteq S_{G,\Delta}(M)$. Then S_{p_H} is a maximal subgroup of $S_{G,\Delta}(M)$ and $S_{p_H} \cong_{def} N/H$

Theorem 3

Example

Let H < G be Δ -definable, Δ -connected (i.e. $Mlt_{\Delta}(H) = 1$) (So: $\exists ! p_H \in S_{G,\Delta}(M)$ generic of H.) Let $N = N_G(H) < G$ and $S_{p_H} = \{n \cdot p_H : n \in N\} \subseteq S_{G,\Delta}(M)$. Then S_{p_H} is a maximal subgroup of $S_{G,\Delta}(M)$ and $S_{p_H} \cong_{def} N/H$

Theorem 3

Example

Let H < G be Δ -definable, Δ -connected (i.e. $Mlt_{\Delta}(H) = 1$) (So: $\exists ! p_H \in S_{G,\Delta}(M)$ generic of H.) Let $N = N_G(H) < G$ and $S_{n_L} = \{n \cdot p_H : n \in N\} \subseteq S_{G,\Delta}(M)$

Then S_{PH} is a maximal subgroup of $S_{G,\Delta}(M)$ and $S_{PH} \cong_{def} N/H$.

Theorem 3

Example

Let H < G be Δ -definable, Δ -connected (i.e. $Mlt_{\Delta}(H) = 1$) (So: $\exists ! p_H \in S_{G,\Delta}(M)$ generic of H.) Let $N = N_G(H) < G$ and $S_{p_H} = \{n \cdot p_H : n \in N\} \subseteq S_{G,\Delta}(M)$. Then S_{p_H} is a maximal subgroup of $S_{G,\Delta}(M)$ and $S_{p_H} \cong_{def} N/H$.

Theorem 3

Example

Let H < G be Δ -definable, Δ -connected (i.e. $Mlt_{\Delta}(H) = 1$) (So: $\exists ! p_H \in S_{G,\Delta}(M)$ generic of H.) Let $N = N_G(H) < G$ and $S_{p_H} = \{n \cdot p_H : n \in N\} \subseteq S_{G,\Delta}(M)$. Then S_{p_H} is a maximal subgroup of $S_{G,\Delta}(M)$ and $S_{p_H} \cong_{def} N/H$

Theorem 3

Example

Let H < G be Δ -definable, Δ -connected (i.e. $Mlt_{\Delta}(H) = 1$) (So: $\exists ! p_H \in S_{G,\Delta}(M)$ generic of H.) Let $N = N_G(H) < G$ and $S_{p_H} = \{n \cdot p_H : n \in N\} \subseteq S_{G,\Delta}(M)$. Then S_{p_H} is a maximal subgroup of $S_{G,\Delta}(M)$ and $S_{p_H} \cong_{def} N/H$.

Theorem 3

1. All maximal subgroups of $S_{G,\Delta}(M)$ are of this form. 2. If $S \subseteq S_G(M)$ is a maximal subgroup, then $S = invlim_{\Delta \in Inv}S_{\Delta}$ for some maximal subgroups $S_{\Delta} \subseteq S_{G,\Delta}(M)$.

・ 同 ト ・ ヨ ト ・ ヨ

Example

Let H < G be Δ -definable, Δ -connected (i.e. $Mlt_{\Delta}(H) = 1$) (So: $\exists !p_H \in S_{G,\Delta}(M)$ generic of H.) Let $N = N_G(H) < G$ and $S_{p_H} = \{n \cdot p_H : n \in N\} \subseteq S_{G,\Delta}(M)$. Then S_{p_H} is a maximal subgroup of $S_{G,\Delta}(M)$ and $S_{p_H} \cong_{def} N/H$.

Theorem 3

1. All maximal subgroups of $S_{G,\Delta}(M)$ are of this form. 2. If $S \subseteq S_G(M)$ is a maximal subgroup, then $S = invlim_{\Delta \in Inv}S_{\Delta}$ for some maximal subgroups $S_{\Delta} \subseteq S_{G,\Delta}(M)$.

・ 同 ト ・ ヨ ト ・ ヨ

Example

Let H < G be Δ -definable, Δ -connected (i.e. $Mlt_{\Delta}(H) = 1$) (So: $\exists !p_H \in S_{G,\Delta}(M)$ generic of H.) Let $N = N_G(H) < G$ and $S_{p_H} = \{n \cdot p_H : n \in N\} \subseteq S_{G,\Delta}(M)$. Then S_{p_H} is a maximal subgroup of $S_{G,\Delta}(M)$ and $S_{p_H} \cong_{def} N/H$.

Theorem 3

1. All maximal subgroups of $S_{G,\Delta}(M)$ are of this form.

2. If $S \subseteq S_G(M)$ is a maximal subgroup, then $S = invlim_{\Delta \in Inv}S_{\Delta}$ for some maximal subgroups $S_{\Delta} \subseteq S_{G,\Delta}(M)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example

Let H < G be Δ -definable, Δ -connected (i.e. $Mlt_{\Delta}(H) = 1$) (So: $\exists !p_H \in S_{G,\Delta}(M)$ generic of H.) Let $N = N_G(H) < G$ and $S_{p_H} = \{n \cdot p_H : n \in N\} \subseteq S_{G,\Delta}(M)$. Then S_{p_H} is a maximal subgroup of $S_{G,\Delta}(M)$ and $S_{p_H} \cong_{def} N/H$.

Theorem 3

1. All maximal subgroups of $S_{G,\Delta}(M)$ are of this form. 2. If $S \subseteq S_G(M)$ is a maximal subgroup, then $S = invlim_{\Delta \in Inv}S_{\Delta}$ for some maximal subgroups $S_{\Delta} \subseteq S_{G,\Delta}(M)$.

伺 ト イヨト イヨト

$$S_G(M) \ni p \rightsquigarrow d_p : Def_G(M) \to Def_G(M)$$

 $S_{G,\Delta}(M) \ni p \rightsquigarrow d_p : Def_{G,\Delta}(M) \to Def_{G,\Delta}(M)$

 $d_p \rightsquigarrow Ker(d_p), Im(d_p)$

 $Ker(d_p) = \{ U \in Def_{G,\Delta}(M) : [U] \cap cl(Gp) = \emptyset \}$

ldea

- The larger the type $p \in S_G(M), \ p \in S_{G,\Delta}(M)$
- The smaller the flow cl(Gp).
- The larger the kernel $Ker(d_p)$.
- The smaller the image $Im(d_p)$.
- The larger the (local) Morley rank of *p*.

$$S_G(M) \ni p \rightsquigarrow d_p : Def_G(M) \to Def_G(M)$$

 $S_{G,\Delta}(M) \ni p \rightsquigarrow d_p : Def_{G,\Delta}(M) \to Def_{G,\Delta}(M)$

 $d_p \rightsquigarrow Ker(d_p), Im(d_p)$

 $Ker(d_p) = \{ U \in Def_{G,\Delta}(M) : [U] \cap cl(Gp) = \emptyset \}$

ldea

- The larger the type $p \in S_G(M), \ p \in S_{G,\Delta}(M)$
- The smaller the flow cl(Gp).
- The larger the kernel $Ker(d_p)$.
- The smaller the image $Im(d_p)$.
- The larger the (local) Morley rank of *p*.

$$S_G(M) \ni p \rightsquigarrow d_p : Def_G(M) \to Def_G(M)$$

 $S_{G,\Delta}(M) \ni p \rightsquigarrow d_p : Def_{G,\Delta}(M) \to Def_{G,\Delta}(M)$

 $d_p \rightsquigarrow Ker(d_p), Im(d_p)$

 $Ker(d_p) = \{U \in Def_{G,\Delta}(M) : [U] \cap cl(Gp) = \emptyset\}$

- The larger the type $p \in S_G(M), \ p \in S_{G,\Delta}(M)$
- The smaller the flow cl(Gp).
- The larger the kernel $Ker(d_p)$.
- The smaller the image $Im(d_p)$.
- The larger the (local) Morley rank of *p*.

$$S_G(M) \ni p \rightsquigarrow d_p : Def_G(M) \to Def_G(M)$$

 $S_{G,\Delta}(M) \ni p \rightsquigarrow d_p : Def_{G,\Delta}(M) \to Def_{G,\Delta}(M)$

 $d_p \rightsquigarrow Ker(d_p), Im(d_p)$

$$Ker(d_p) = \{U \in Def_{G,\Delta}(M) : [U] \cap cl(Gp) = \emptyset\}$$

- The larger the type $p \in S_G(M), \ p \in S_{G,\Delta}(M)$
- The smaller the flow cl(Gp).
- The larger the kernel $Ker(d_p)$.
- The smaller the image $Im(d_p)$.
- The larger the (local) Morley rank of *p*.

$$S_G(M) \ni p \rightsquigarrow d_p : Def_G(M) \to Def_G(M)$$

 $S_{G,\Delta}(M) \ni p \rightsquigarrow d_p : Def_{G,\Delta}(M) \to Def_{G,\Delta}(M)$

 $d_p \rightsquigarrow Ker(d_p), Im(d_p)$

$$Ker(d_p) = \{U \in Def_{G,\Delta}(M) : [U] \cap cl(Gp) = \emptyset\}$$

- The larger the type $p \in S_G(M), \ p \in S_{G,\Delta}(M)$
- The smaller the flow *cl*(*Gp*).
- The larger the kernel Ker(d_p).
- The smaller the image $Im(d_p)$.
- The larger the (local) Morley rank of *p*.

$$S_G(M) \ni p \rightsquigarrow d_p : Def_G(M) \to Def_G(M)$$

 $S_{G,\Delta}(M) \ni p \rightsquigarrow d_p : Def_{G,\Delta}(M) \to Def_{G,\Delta}(M)$

$$d_p \rightsquigarrow Ker(d_p), Im(d_p)$$

$$Ker(d_p) = \{U \in Def_{G,\Delta}(M) : [U] \cap cl(Gp) = \emptyset\}$$

- The larger the type $p \in S_G(M), \ p \in S_{G,\Delta}(M)$
- The smaller the flow *cl*(*Gp*).
- The larger the kernel $Ker(d_p)$.
- The smaller the image $Im(d_p)$.
- The larger the (local) Morley rank of *p*.

$$S_G(M) \ni p \rightsquigarrow d_p : Def_G(M) \to Def_G(M)$$

 $S_{G,\Delta}(M) \ni p \rightsquigarrow d_p : Def_{G,\Delta}(M) \to Def_{G,\Delta}(M)$

$$d_p \rightsquigarrow Ker(d_p), Im(d_p)$$

$$Ker(d_p) = \{U \in Def_{G,\Delta}(M) : [U] \cap cl(Gp) = \emptyset\}$$

- The larger the type $p \in S_G(M), \ p \in S_{G,\Delta}(M)$
- The smaller the flow *cl*(*Gp*).
- The larger the kernel $Ker(d_p)$.
- The smaller the image $Im(d_p)$.
- The larger the (local) Morley rank of *p*.

$$S_G(M) \ni p \rightsquigarrow d_p : Def_G(M) \to Def_G(M)$$

 $S_{G,\Delta}(M) \ni p \rightsquigarrow d_p : Def_{G,\Delta}(M) \to Def_{G,\Delta}(M)$

$$d_p \rightsquigarrow Ker(d_p), Im(d_p)$$

$$Ker(d_p) = \{U \in Def_{G,\Delta}(M) : [U] \cap cl(Gp) = \emptyset\}$$

- The larger the type $p \in S_G(M), \ p \in S_{G,\Delta}(M)$
- The smaller the flow cl(Gp).
- The larger the kernel $Ker(d_p)$.
- The smaller the image $Im(d_p)$.
- The larger the (local) Morley rank of *p*.

 $Ker(d_p), Im(d_p): \text{ measures of the size of } p.$ Let $p \in S_G(M)$ (or $p \in S_{G,\Delta}(M)...$)
Let $p^{*n} = \underbrace{p * \cdots * p}_{n}.So \ d_{p^{*n}} = \underbrace{d_p \circ \cdots \circ d_p}_{n}.$ Let $R(p) = \langle RM_{\Delta}(p) : \Delta \in Inv \rangle.$

Lemma

1. $R(p^{*n})$ grow (coordinatewise), $Ker(d_{p^{*n}})$ grow and $Im(d_{p^{*n}})$ shrink with n = 1, 2, 3, ...

2. The growth/shrinking of these three sequences is strictly correlated.

Theorem 4

Let $p \in S_G(M)$. Then p is "profinitely many steps away" from a translate of a generic type of a connected type-definable subgroup of G.

< ロ > < 同 > < 回 > < 回 >

 $Ker(d_p), Im(d_p): \text{ measures of the size of } p.$ Let $p \in S_G(M)$ (or $p \in S_{G,\Delta}(M)...$) Let $p^{*n} = \underbrace{p * \cdots * p}_n \text{So } d_{p^{*n}} = \underbrace{d_p \circ \cdots \circ d_p}_n.$ Let $R(p) = \langle RM_{\Delta}(p) : \Delta \in Inv \rangle.$

Lemma

1. $R(p^{*n})$ grow (coordinatewise), $Ker(d_{p^{*n}})$ grow and $Im(d_{p^{*n}})$ shrink with n = 1, 2, 3, ...

2. The growth/shrinking of these three sequences is strictly correlated.

Theorem 4

Let $p \in S_G(M)$. Then p is "profinitely many steps away" from a translate of a generic type of a connected type-definable subgroup of G.

< ロ > < 同 > < 回 > < 回 >

$$\begin{aligned} & \operatorname{Ker}(d_p), \operatorname{Im}(d_p): \text{ measures of the size of } p. \\ & \operatorname{Let} \ p \in S_G(M) \ (\text{or } p \in S_{G,\Delta}(M)...) \\ & \operatorname{Let} \ p^{*n} = \underbrace{p * \cdots * p}_n. \\ & \operatorname{So} \ d_{p^{*n}} = \underbrace{d_p \circ \cdots \circ d_p}_n. \\ & \operatorname{Let} \ R(p) = \langle RM_{\Delta}(p) : \Delta \in \operatorname{Inv} \rangle. \end{aligned}$$

Lemma

1. $R(p^{*n})$ grow (coordinatewise), $Ker(d_{p^{*n}})$ grow and $Im(d_{p^{*n}})$ shrink with n = 1, 2, 3, ...

2. The growth/shrinking of these three sequences is strictly correlated.

Theorem 4

Let $p \in S_G(M)$. Then p is "profinitely many steps away" from a translate of a generic type of a connected type-definable subgroup of G.

・ロト ・同ト ・ヨト ・ヨト

$$\begin{aligned} & \operatorname{Ker}(d_p), \operatorname{Im}(d_p): \text{ measures of the size of } p. \\ & \operatorname{Let} \ p \in S_G(M) \ (\text{or } p \in S_{G,\Delta}(M)...) \\ & \operatorname{Let} \ p^{*n} = \underbrace{p * \cdots * p}_n \operatorname{So} \ d_{p^{*n}} = \underbrace{d_p \circ \cdots \circ d_p}_n. \\ & \operatorname{Let} \ R(p) = \langle RM_{\Delta}(p) : \Delta \in \operatorname{Inv} \rangle. \end{aligned}$$

Lemma

1. $R(p^{*n})$ grow (coordinatewise), $Ker(d_{p^{*n}})$ grow and $Im(d_{p^{*n}})$ shrink with n = 1, 2, 3, ...

2. The growth/shrinking of these three sequences is strictly correlated.

Theorem 4

Let $p \in S_G(M)$. Then p is "profinitely many steps away" from a translate of a generic type of a connected type-definable subgroup of G.

- 4 同 ト 4 ヨ ト 4 ヨ ト

$$\begin{array}{l} \operatorname{Ker}(d_p), \operatorname{Im}(d_p): \text{ measures of the size of } p. \\ \operatorname{Let} p \in S_G(M) \ (\text{or } p \in S_{G,\Delta}(M)...) \\ \operatorname{Let} p^{*n} = \underbrace{p * \cdots * p}_n \operatorname{So} d_{p^{*n}} = \underbrace{d_p \circ \cdots \circ d_p}_n \\ \operatorname{Let} R(p) = \langle RM_{\Delta}(p) : \Delta \in \operatorname{Inv} \rangle. \end{array}$$

_emma

1. $R(p^{*n})$ grow (coordinatewise), $Ker(d_{p^{*n}})$ grow and $Im(d_{p^{*n}})$ shrink with n = 1, 2, 3, ...

2. The growth/shrinking of these three sequences is strictly correlated.

Theorem 4

Let $p \in S_G(M)$. Then p is "profinitely many steps away" from a translate of a generic type of a connected type-definable subgroup of G.

・ロト ・同ト ・ヨト ・ヨト

$$\begin{array}{l} \operatorname{Ker}(d_p), \operatorname{Im}(d_p): \text{ measures of the size of } p. \\ \operatorname{Let} p \in S_G(M) \ (\text{or } p \in S_{G,\Delta}(M)...) \\ \operatorname{Let} p^{*n} = \underbrace{p * \cdots * p}_n \operatorname{So} \ d_{p^{*n}} = \underbrace{d_p \circ \cdots \circ d_p}_n. \\ \operatorname{Let} R(p) = \langle RM_{\Delta}(p) : \Delta \in \operatorname{Inv} \rangle. \end{array}$$

Lemma

1. $R(p^{*n})$ grow (coordinatewise), $Ker(d_{p^{*n}})$ grow and $Im(d_{p^{*n}})$ shrink with n = 1, 2, 3, ...

2. The growth/shrinking of these three sequences is strictly correlated.

Theorem 4

Let $p \in S_G(M)$. Then p is "profinitely many steps away" from a translate of a generic type of a connected type-definable subgroup of G.

- 4 同 6 4 日 6 4 日 6

$$\begin{array}{l} \operatorname{Ker}(d_p), \operatorname{Im}(d_p): \text{ measures of the size of } p. \\ \operatorname{Let} p \in S_G(M) \ (\text{or } p \in S_{G,\Delta}(M)...) \\ \operatorname{Let} p^{*n} = \underbrace{p * \cdots * p}_{n}. \\ \operatorname{So} \ d_{p^{*n}} = \underbrace{d_p \circ \cdots \circ d_p}_{n}. \\ \operatorname{Let} R(p) = \langle RM_{\Delta}(p) : \Delta \in \operatorname{Inv} \rangle. \end{array}$$

Lemma

1. $R(p^{*n})$ grow (coordinatewise), $Ker(d_{p^{*n}})$ grow and $Im(d_{p^{*n}})$ shrink with n = 1, 2, 3, ...

2. The growth/shrinking of these three sequences is strictly correlated.

Theorem 4

Let $p \in S_G(M)$. Then p is "profinitely many steps away" from a translate of a generic type of a connected type-definable subgroup of G.

- 4 同 6 4 日 6 4 日 6

$$\begin{array}{l} \operatorname{Ker}(d_p), \operatorname{Im}(d_p): \text{ measures of the size of } p. \\ \operatorname{Let} p \in S_G(M) \ (\text{or } p \in S_{G,\Delta}(M)...) \\ \operatorname{Let} p^{*n} = \underbrace{p * \cdots * p}_{n}. \\ \operatorname{So} \ d_{p^{*n}} = \underbrace{d_p \circ \cdots \circ d_p}_{n}. \\ \operatorname{Let} R(p) = \langle RM_{\Delta}(p) : \Delta \in \operatorname{Inv} \rangle. \end{array}$$

Lemma

1. $R(p^{*n})$ grow (coordinatewise), $Ker(d_{p^{*n}})$ grow and $Im(d_{p^{*n}})$ shrink with n = 1, 2, 3, ...

2. The growth/shrinking of these three sequences is strictly correlated.

Theorem 4

Let $p \in S_G(M)$. Then p is "profinitely many steps away" from a translate of a generic type of a connected type-definable subgroup of G.

- 4 同 6 4 日 6 4 日 6

$$\begin{array}{l} \operatorname{Ker}(d_p), \operatorname{Im}(d_p): \text{ measures of the size of } p. \\ \operatorname{Let} p \in S_G(M) \ (\text{or } p \in S_{G,\Delta}(M)...) \\ \operatorname{Let} p^{*n} = \underbrace{p * \cdots * p}_{n}. \\ \operatorname{So} \ d_{p^{*n}} = \underbrace{d_p \circ \cdots \circ d_p}_{n}. \\ \operatorname{Let} R(p) = \langle RM_{\Delta}(p) : \Delta \in \operatorname{Inv} \rangle. \end{array}$$

Lemma

1. $R(p^{*n})$ grow (coordinatewise), $Ker(d_{p^{*n}})$ grow and $Im(d_{p^{*n}})$ shrink with n = 1, 2, 3, ...

2. The growth/shrinking of these three sequences is strictly correlated.

Theorem 4

Let $p \in S_G(M)$. Then p is "profinitely many steps away" from a translate of a generic type of a connected type-definable subgroup of G.

(人間) ト く ヨ ト く ヨ ト

Let $\Delta \in Inv$, $n_{\Delta} = RM_{\Delta}(G)$, $p_{\Delta} = p|_{\Delta} \in S_{G,\Delta}(M)$. Then:

- $p_{\Delta}^{*n_{\Delta}} \in a$ maximal subgroup S of $S_{G,\Delta}(M)$.
- p_Δ^{*n_Δ} is a translate of a generic type of a Δ-definable Δ-connected group H < G
- So For every *l* ≥ *n*_∆, items 1. and 2. hold for p_{Δ}^{*l} in place of $p_{\Delta}^{*n_{\Delta}}$, with the same *S* and *H*.

Corollary

 $S_{G,\Delta}(M)^{n_{\Delta}} = \bigcup \{ \text{subgroups of } S_{G,\Delta}(M) \}.$

ゆ ト イヨ ト イヨト

Let $\Delta \in Inv$, $n_{\Delta} = RM_{\Delta}(G)$, $p_{\Delta} = p|_{\Delta} \in S_{G,\Delta}(M)$. Then:

• $p_{\Delta}^{*n_{\Delta}} \in a$ maximal subgroup S of $S_{G,\Delta}(M)$.

- p_Δ^{*n_Δ} is a translate of a generic type of a Δ-definable Δ-connected group H < G
- ◎ For every $l \ge n_{\Delta}$, items 1. and 2. hold for p_{Δ}^{*l} in place of $p_{\Delta}^{*n_{\Delta}}$, with the same *S* and *H*.

Corollary

 $S_{G,\Delta}(M)^{n_{\Delta}} = \bigcup \{ \text{subgroups of } S_{G,\Delta}(M) \}.$

ゆ ト イヨ ト イヨト

Let $\Delta \in \mathit{Inv}$, $n_\Delta = \mathit{RM}_\Delta(G)$, $p_\Delta = p|_\Delta \in S_{G,\Delta}(M)$. Then:

- $p_{\Delta}^{*n_{\Delta}} \in a$ maximal subgroup S of $S_{G,\Delta}(M)$.
- ◎ For every $l \ge n_{\Delta}$, items 1. and 2. hold for p_{Δ}^{*l} in place of $p_{\Delta}^{*n_{\Delta}}$, with the same *S* and *H*.

Corollary

 $S_{G,\Delta}(M)^{n_{\Delta}} = \bigcup \{ \text{subgroups of } S_{G,\Delta}(M) \}.$

Let $\Delta \in Inv$, $n_{\Delta} = RM_{\Delta}(G)$, $p_{\Delta} = p|_{\Delta} \in S_{G,\Delta}(M)$. Then:

- $p_{\Delta}^{*n_{\Delta}} \in a$ maximal subgroup S of $S_{G,\Delta}(M)$.
- For every $l \ge n_{\Delta}$, items 1. and 2. hold for p_{Δ}^{*l} in place of $p_{\Delta}^{*n_{\Delta}}$, with the same S and H.

Corollary

 $S_{G,\Delta}(M)^{n_{\Delta}} = \bigcup \{ \text{subgroups of } S_{G,\Delta}(M) \}.$

Let $\Delta \in Inv$, $n_{\Delta} = RM_{\Delta}(G)$, $p_{\Delta} = p|_{\Delta} \in S_{G,\Delta}(M)$. Then:

- $p_{\Delta}^{*n_{\Delta}} \in a$ maximal subgroup S of $S_{G,\Delta}(M)$.
- p_Δ^{*n_Δ} is a translate of a generic type of a Δ-definable Δ-connected group H < G
- So For every $l \ge n_{\Delta}$, items 1. and 2. hold for p_{Δ}^{*l} in place of $p_{\Delta}^{*n_{\Delta}}$, with the same S and H.

Corollary

 $S_{G,\Delta}(M)^{n_{\Delta}} = \bigcup \{ \text{subgroups of } S_{G,\Delta}(M) \}.$