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Set-up

T is a stable theory in language L
C is a monster model of T
M ≺ C
G is a group definable in M
SG (M) = {tp(a/M) : a ∈ GC}

Definition

Let p, q ∈ SG (M)
p ∗ q = tp(a · b/M), where a |= p, b |= q and a |̂ Mb

(SG (M), ∗) is a semi-group

Gen := {p ∈ SG (M) : p is generic} is a maximal subgroup of
SG (M),
a minimal left ideal in SG (M).

Gen ∼= GC/(G 0)C

Newelski Topological dynamics of stable groups



Set-up

T is a stable theory in language L
C is a monster model of T
M ≺ C
G is a group definable in M
SG (M) = {tp(a/M) : a ∈ GC}

Definition

Let p, q ∈ SG (M)
p ∗ q = tp(a · b/M), where a |= p, b |= q and a |̂ Mb

(SG (M), ∗) is a semi-group

Gen := {p ∈ SG (M) : p is generic} is a maximal subgroup of
SG (M),
a minimal left ideal in SG (M).

Gen ∼= GC/(G 0)C

Newelski Topological dynamics of stable groups



Set-up

T is a stable theory in language L
C is a monster model of T
M ≺ C
G is a group definable in M
SG (M) = {tp(a/M) : a ∈ GC}

Definition

Let p, q ∈ SG (M)
p ∗ q = tp(a · b/M), where a |= p, b |= q and a |̂ Mb

(SG (M), ∗) is a semi-group

Gen := {p ∈ SG (M) : p is generic} is a maximal subgroup of
SG (M),
a minimal left ideal in SG (M).

Gen ∼= GC/(G 0)C

Newelski Topological dynamics of stable groups



Set-up

T is a stable theory in language L
C is a monster model of T
M ≺ C
G is a group definable in M
SG (M) = {tp(a/M) : a ∈ GC}

Definition

Let p, q ∈ SG (M)
p ∗ q = tp(a · b/M), where a |= p, b |= q and a |̂ Mb

(SG (M), ∗) is a semi-group

Gen := {p ∈ SG (M) : p is generic} is a maximal subgroup of
SG (M),
a minimal left ideal in SG (M).

Gen ∼= GC/(G 0)C

Newelski Topological dynamics of stable groups



Set-up

T is a stable theory in language L
C is a monster model of T
M ≺ C
G is a group definable in M
SG (M) = {tp(a/M) : a ∈ GC}

Definition

Let p, q ∈ SG (M)
p ∗ q = tp(a · b/M), where a |= p, b |= q and a |̂ Mb

(SG (M), ∗) is a semi-group

Gen := {p ∈ SG (M) : p is generic} is a maximal subgroup of
SG (M),
a minimal left ideal in SG (M).

Gen ∼= GC/(G 0)C

Newelski Topological dynamics of stable groups



Set-up

T is a stable theory in language L
C is a monster model of T
M ≺ C
G is a group definable in M
SG (M) = {tp(a/M) : a ∈ GC}

Definition

Let p, q ∈ SG (M)
p ∗ q = tp(a · b/M), where a |= p, b |= q and a |̂ Mb

(SG (M), ∗) is a semi-group

Gen := {p ∈ SG (M) : p is generic} is a maximal subgroup of
SG (M),
a minimal left ideal in SG (M).

Gen ∼= GC/(G 0)C

Newelski Topological dynamics of stable groups



Set-up

T is a stable theory in language L
C is a monster model of T
M ≺ C
G is a group definable in M
SG (M) = {tp(a/M) : a ∈ GC}

Definition

Let p, q ∈ SG (M)
p ∗ q = tp(a · b/M), where a |= p, b |= q and a |̂ Mb

(SG (M), ∗) is a semi-group

Gen := {p ∈ SG (M) : p is generic} is a maximal subgroup of
SG (M),
a minimal left ideal in SG (M).

Gen ∼= GC/(G 0)C

Newelski Topological dynamics of stable groups



Set-up

T is a stable theory in language L
C is a monster model of T
M ≺ C
G is a group definable in M
SG (M) = {tp(a/M) : a ∈ GC}

Definition

Let p, q ∈ SG (M)
p ∗ q = tp(a · b/M), where a |= p, b |= q and a |̂ Mb

(SG (M), ∗) is a semi-group

Gen := {p ∈ SG (M) : p is generic} is a maximal subgroup of
SG (M),
a minimal left ideal in SG (M).

Gen ∼= GC/(G 0)C

Newelski Topological dynamics of stable groups



Set-up

T is a stable theory in language L
C is a monster model of T
M ≺ C
G is a group definable in M
SG (M) = {tp(a/M) : a ∈ GC}

Definition

Let p, q ∈ SG (M)
p ∗ q = tp(a · b/M), where a |= p, b |= q and a |̂ Mb

(SG (M), ∗) is a semi-group

Gen := {p ∈ SG (M) : p is generic} is a maximal subgroup of
SG (M),
a minimal left ideal in SG (M).

Gen ∼= GC/(G 0)C

Newelski Topological dynamics of stable groups



A result

Theorem 1

(SG (M), ∗) is an inverse limit of a definable system of
type-definable semigroups (in Meq).

The proof uses:

the definability lemma in local stability theory (the full
version, Pillay)

topological dynamics, particularly the functional
representation of G -types.
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Topological dynamics

Definition

(1) X is a G -flow if

X is a compact topological space

G acts on X by homeomorphisms

(2) X is point-transitive if there is a dense G -orbit ⊆ X .
(3) Y ⊆ X is a G -subflow of X if Y is closed and G -closed.

Example

Let X be a G -flow and p ∈ X . Then cl(Gp) is a subflow of X
generated by p.
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Topological dynamics

Definition continued

Assume X is a G -flow and p ∈ X .
(4) p is almost periodic if cl(Gp) is a minimal subflow of X .
(5) U ⊆ X is generic if (∃A ⊆fin G )AU = X .
(6) U ⊆ X is weakly generic if (∃V ⊆ X )U ∪V is generic and V is
non-generic.
(7) p is [weakly] generic if every open U 3 p is.

Assume X is a G -flow.
WGen(X ) = {p ∈ X : p is weakly generic}
Gen(X ) = {p ∈ X : p is generic}
APer(X ) = {p ∈ X : p is almost periodic}
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Topological dynamics

Fact

APer(X ) =
⋃
{minimal subflows of X}

APer(X ) 6= ∅
WGen(X ) = cl(APer(X ))

If Gen(X ) 6= ∅, then Gen(X ) = WGen(X ) = APer(X )

Gen(X ) 6= ∅ iff there is just one minimal subflow of X .
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Model theory

Let DefG (M) = {definable subsets of G}.

DefG (M) is an algebra od sets, closed under left translation in
G

SG (M) = S(DefG (M))

G acts on SG (M) by left translation:

g · p = {ϕ(g−1 · x) : ϕ(x) ∈ p}

SG (M) is a point-transitive G -flow,
the set {tp(g/M : g ∈ G} is a dense orbit.

p ∈ SG (M) is a generic type iff p is a generic point in the
G -flow SG (M).
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Topological dynamics

Let X be a point-transitive G -flow.
G 3 g  πg : X

≈→ X , πg (x) = g · x ,

E (X ) = cl({πg : g ∈ G}) ⊆ XX

cl is the topological closure w.r. to pointwise convergence
topology in XX

E (X ) is the Ellis (enveloping) semigroup of X

E (X ) is a point-transitive G -flow:
1. for f ∈ E (X ) and g ∈ G , g ∗ f = πg ◦ f
2. {πg : g ∈ G} is a dense G -orbit.

◦ is continuous on E (X ), in the first coordinate.
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Ellis semigroup

Definition

1. I ⊆ E (X ) is an ideal if I 6= ∅ and fI ⊆ I for every f ∈ E (X ).
2. j ∈ E (X ) is an idempotent if j2 = j .

Properties of E (X )

Minimal subflows of E (X ) = minimal ideals in E (X ).

Let I ⊆ E (X ) be a minimal ideal and j ∈ I be an idempotent.
Then jI ⊆ I is a group (with identity j), called an ideal
subgroup of E (X ) and
I is a union of its ideal subgroups.

The ideal subgroups of E (X ) are isomorphic.

E (X ) explains the structure of X .

Sometimes X ∼= E (X ), as G -flows. For example,
E (SG (M)) ∼= SG (M), as G -flows and semigroups.
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Functional representation

Let A ⊆ P(G ) be a G -algebra of sets
(i.e. closed under left translation in G ).
Then S(A) is a G -flow.
For p ∈ S(A) we define dp : A → P(G ) by:

dp(U) = {g ∈ G : g−1U ∈ p}

Definition

A is d-closed if A is closed under dp for every p ∈ S(A).

Example

A = DefG (M) is d-closed, because every p ∈ SG (M) is definable.
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Functional representation

Assume A is d-closed.

For p ∈ S(A), dp ∈ End(A) := {G -endomorphisms of A}.
Let d : S(A)→ End(A) map p to dp. Then d is a bijection.

d induces ∗ on S(A) so that

d : (S(A), ∗)
∼=→ (End(A), ◦)

Theorem 2

(E (S(A)), ◦) ∼=1 (S(A), ∗) ∼=2 (End(A), ◦)

Proof

1. For p ∈ S(A) let lp(q) = p ∗ q.
Then lp ∈ E (S(A)) and p 7→ lp gives ∼=1.
2. This is d .
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Functional representation

Example

If A = DefG (M) then A is d-closed and ∗ on SG (M) = S(A) from
Theorem 2 is just the free multiplication of G -types.
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(SG (M), ∗) in the definable realm

Definition

1. ∆ ⊆ L is invariant if the family of relatively ∆-definable subsets
of G is closed under left and right translation in G .
2. Let Inv = {∆ ⊆fin L : ∆ is invariant}.

Fact

Inv is cofinal in [L]<ω.

Let ∆ ∈ Inv .

Notation

DefG ,∆ = {relatively ∆-definable subsets of G}

SG ,∆ = S(DefG ,∆(M)),

the space of complete ∆-types of G over M.

Newelski Topological dynamics of stable groups



(SG (M), ∗) in the definable realm

Definition

1. ∆ ⊆ L is invariant if the family of relatively ∆-definable subsets
of G is closed under left and right translation in G .
2. Let Inv = {∆ ⊆fin L : ∆ is invariant}.

Fact

Inv is cofinal in [L]<ω.

Let ∆ ∈ Inv .

Notation

DefG ,∆ = {relatively ∆-definable subsets of G}

SG ,∆ = S(DefG ,∆(M)),

the space of complete ∆-types of G over M.

Newelski Topological dynamics of stable groups



(SG (M), ∗) in the definable realm

Definition

1. ∆ ⊆ L is invariant if the family of relatively ∆-definable subsets
of G is closed under left and right translation in G .
2. Let Inv = {∆ ⊆fin L : ∆ is invariant}.

Fact

Inv is cofinal in [L]<ω.

Let ∆ ∈ Inv .

Notation

DefG ,∆ = {relatively ∆-definable subsets of G}

SG ,∆ = S(DefG ,∆(M)),

the space of complete ∆-types of G over M.

Newelski Topological dynamics of stable groups



(SG (M), ∗) in the definable realm

Definition

1. ∆ ⊆ L is invariant if the family of relatively ∆-definable subsets
of G is closed under left and right translation in G .
2. Let Inv = {∆ ⊆fin L : ∆ is invariant}.

Fact

Inv is cofinal in [L]<ω.

Let ∆ ∈ Inv .

Notation

DefG ,∆ = {relatively ∆-definable subsets of G}

SG ,∆ = S(DefG ,∆(M)),

the space of complete ∆-types of G over M.

Newelski Topological dynamics of stable groups



(SG (M), ∗) in the definable realm

Definition

1. ∆ ⊆ L is invariant if the family of relatively ∆-definable subsets
of G is closed under left and right translation in G .
2. Let Inv = {∆ ⊆fin L : ∆ is invariant}.

Fact

Inv is cofinal in [L]<ω.

Let ∆ ∈ Inv .

Notation

DefG ,∆ = {relatively ∆-definable subsets of G}

SG ,∆ = S(DefG ,∆(M)),

the space of complete ∆-types of G over M.

Newelski Topological dynamics of stable groups



(SG (M), ∗) in the definable realm

Definition

1. ∆ ⊆ L is invariant if the family of relatively ∆-definable subsets
of G is closed under left and right translation in G .
2. Let Inv = {∆ ⊆fin L : ∆ is invariant}.

Fact

Inv is cofinal in [L]<ω.

Let ∆ ∈ Inv .

Notation

DefG ,∆ = {relatively ∆-definable subsets of G}

SG ,∆ = S(DefG ,∆(M)),

the space of complete ∆-types of G over M.

Newelski Topological dynamics of stable groups



(SG (M), ∗) in the definable realm

Definition

1. ∆ ⊆ L is invariant if the family of relatively ∆-definable subsets
of G is closed under left and right translation in G .
2. Let Inv = {∆ ⊆fin L : ∆ is invariant}.

Fact

Inv is cofinal in [L]<ω.

Let ∆ ∈ Inv .

Notation

DefG ,∆ = {relatively ∆-definable subsets of G}

SG ,∆ = S(DefG ,∆(M)),

the space of complete ∆-types of G over M.

Newelski Topological dynamics of stable groups



(SG (M), ∗) in the definable realm

Definition

1. ∆ ⊆ L is invariant if the family of relatively ∆-definable subsets
of G is closed under left and right translation in G .
2. Let Inv = {∆ ⊆fin L : ∆ is invariant}.

Fact

Inv is cofinal in [L]<ω.

Let ∆ ∈ Inv .

Notation

DefG ,∆ = {relatively ∆-definable subsets of G}

SG ,∆ = S(DefG ,∆(M)),

the space of complete ∆-types of G over M.

Newelski Topological dynamics of stable groups



(SG (M), ∗) in the definable realm

Definition

1. ∆ ⊆ L is invariant if the family of relatively ∆-definable subsets
of G is closed under left and right translation in G .
2. Let Inv = {∆ ⊆fin L : ∆ is invariant}.

Fact

Inv is cofinal in [L]<ω.

Let ∆ ∈ Inv .

Notation

DefG ,∆ = {relatively ∆-definable subsets of G}

SG ,∆ = S(DefG ,∆(M)),

the space of complete ∆-types of G over M.

Newelski Topological dynamics of stable groups



(SG (M), ∗) in the definable realm

1 DefG ,∆(M) is a d-closed G -algebra of sets.
(this relies on the full definability lemma in local stability
theory)

2 (SG ,∆(M), ∗) ∼= (E (SG ,∆(M)), ◦) ∼= (End(DefG ,∆(M)), ◦)
(this is by Theorem 2)

3

DefG (M) =
⋃

∆∈Inv

DefG ,∆(M)

4 〈SG ,∆(M),∆ ∈ Inv〉 is an inverse system of G - flows and
semi-groups
(the connecting functions are restrictions)

5 SG (M) = invlim∆∈InvSG ,∆(M)
(as G -flows and semigroups)
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Commuting diagram

(SG (M), ∗) r //

d ∼=
��

(SG ,∆(M), ∗)

d ∼=
��

End(DefG (M), ◦) r // End(DefG ,∆(M), ◦)

The horizontal arrows are restrictions.
All arrows are semigroup homomorphisms.
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(SG (M), ∗) in the definable realm

Proposition

(SG ,∆(M), ∗) is a type-definable semigroup (in Meq).

Proof.

SG ,∆(M) is a type-definable set in Meq

(identify p ∈ SG ,∆(M) with the tuple of canonical
ϕ-definitions of p, ϕ ∈ ∆)

∗ is relatively definable on SG ,∆(M).
(Use d : SG ,∆(M) ∼= End(DefG ,∆(M)), the full definability
lemma and compactness.
DefG ,∆(M) is ind-definable in Meq.)
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Subgroups of E (S(A)) ∼= S(A) ∼= End(A)

Assume f ∈ End(A).

Ker(f ) = {U ∈ A : f (U) = ∅}

Im(f ) = {f (U) : U ∈ A}

Ker(f ) is a G -ideal in A.

Im(f ) is a G -subalgebra of A.

Crucial point

Assume f , g ∈ End(A). Then

Ker(f ◦ g) ⊇ Ker(g) and Im(f ◦ g) ⊆ Im(f )
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Subgroups of E (S(A)) ∼= S(A) ∼= End(A)

Proposition

Assume that S is a subgroup of End(A).Then all f ∈ S have a
common kernel K = KS and common image R = RS .Let SK ,R =
{f ∈ End(A) : Ker(f ) = K , Im(f ) = R and f |R permutes R}.
Then SK ,R is a maximal subgroup of End(A) containing S .

Let I = {ideal subgroups of S(A)}
K = { kernels of ideal subgroups of S(A) ∼= End(A)}
R = { images of ideal subgroups of S(A) ∼= End(A)}

Fact

The mapping I 3 S 7→ 〈KS ,RS〉 ∈ K ×R is a bijection
I → K ×R.
The fibers of the surjective mapping
APer(S(A)) 3 p 7→ Ker(dp) ∈ K are precisely the minimal
subflows of S(A).
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Maximal subgroups of SG (M) and SG ,∆(M)

Example

Let H < G be ∆-definable, ∆-connected (i.e. Mlt∆(H) = 1)
(So: ∃!pH ∈ SG ,∆(M) generic of H.)
Let N = NG (H) < G and SpH

= {n · pH : n ∈ N} ⊆ SG ,∆(M).
Then SpH

is a maximal subgroup of SG ,∆(M) and SpH
∼=def N/H.

Theorem 3

1. All maximal subgroups of SG ,∆(M) are of this form.
2. If S ⊆ SG (M) is a maximal subgroup, then S = invlim∆∈InvS∆

for some maximal subgroups S∆ ⊆ SG ,∆(M).
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Types as functions

SG (M) 3 p  dp : DefG (M)→ DefG (M)

SG ,∆(M) 3 p  dp : DefG ,∆(M)→ DefG ,∆(M)

dp  Ker(dp), Im(dp)

Ker(dp) = {U ∈ DefG ,∆(M) : [U] ∩ cl(Gp) = ∅}

Idea

The larger the type p ∈ SG (M), p ∈ SG ,∆(M)

The smaller the flow cl(Gp).

The larger the kernel Ker(dp).

The smaller the image Im(dp).

The larger the (local) Morley rank of p.
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Types as functions

Ker(dp), Im(dp): measures of the size of p.
Let p ∈ SG (M) (or p ∈ SG ,∆(M)...)
Let p∗n = p ∗ · · · ∗ p︸ ︷︷ ︸

n

.So dp∗n = dp ◦ · · · ◦ dp︸ ︷︷ ︸
n

.

Let R(p) = 〈RM∆(p) : ∆ ∈ Inv〉.

Lemma

1. R(p∗n) grow (coordinatewise),Ker(dp∗n ) grow and Im(dp∗n )
shrink with n = 1, 2, 3, . . . .
2. The growth/shrinking of these three sequences is strictly
correlated.

Theorem 4

Let p ∈ SG (M). Then p is ”profinitely many steps away” from a
translate of a generic type of a connected type-definable subgroup
of G .
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Proof of Theorem 4

Let ∆ ∈ Inv , n∆ = RM∆(G ), p∆ = p|∆ ∈ SG ,∆(M). Then:

1 p∗n∆
∆ ∈ a maximal subgroup S of SG ,∆(M).

2 p∗n∆
∆ is a translate of a generic type of a ∆-definable

∆-connected group H < G

3 For every l ≥ n∆, items 1. and 2. hold for p∗l∆ in place of
p∗n∆

∆ , with the same S and H.

Corollary

SG ,∆(M)n∆ =
⋃
{subgroups of SG ,∆(M)}.
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