Countable structures with few reducts

Dugald Macpherson (University of Leeds)

June 152013

The setting.

Let \mathcal{M} be a countably infinite first order structure. A definable reduct is a structure \mathcal{M}^{\prime} with the same domain as \mathcal{M}, whose relations are definable without parameters in \mathcal{M}.

The setting.

Let \mathcal{M} be a countably infinite first order structure. A definable reduct is a structure \mathcal{M}^{\prime} with the same domain as \mathcal{M}, whose relations are definable without parameters in \mathcal{M}.

It is an improper reduct if also \mathcal{M} is a reduct of \mathcal{M}^{\prime} (so \mathcal{M} and \mathcal{M}^{\prime} have the same 0-definable relations), and is trivial if \mathcal{M}^{\prime} is a reduct of a pure set, so has automorphism group $\operatorname{Sym}(M)$.

The setting.

Let \mathcal{M} be a countably infinite first order structure. A definable reduct is a structure \mathcal{M}^{\prime} with the same domain as \mathcal{M}, whose relations are definable without parameters in \mathcal{M}.

It is an improper reduct if also \mathcal{M} is a reduct of \mathcal{M}^{\prime} (so \mathcal{M} and \mathcal{M}^{\prime} have the same 0-definable relations), and is trivial if \mathcal{M}^{\prime} is a reduct of a pure set, so has automorphism group $\operatorname{Sym}(M)$.

If \mathcal{M}^{\prime} and \mathcal{M} have the same domain, \mathcal{M}^{\prime} is a group-reduct if $\operatorname{Aut}\left(\mathcal{M}^{\prime}\right) \geq \operatorname{Aut}(\mathcal{M})$, is proper if $\operatorname{Aut}\left(\mathcal{M}^{\prime}\right)>\operatorname{Aut}(\mathcal{M})$, trivial if $\operatorname{Aut}(\mathcal{M})=\operatorname{Sym}(M)$.

The setting.

Let \mathcal{M} be a countably infinite first order structure. A definable reduct is a structure \mathcal{M}^{\prime} with the same domain as \mathcal{M}, whose relations are definable without parameters in \mathcal{M}.

It is an improper reduct if also \mathcal{M} is a reduct of \mathcal{M}^{\prime} (so \mathcal{M} and \mathcal{M}^{\prime} have the same 0-definable relations), and is trivial if \mathcal{M}^{\prime} is a reduct of a pure set, so has automorphism group $\operatorname{Sym}(M)$.

If \mathcal{M}^{\prime} and \mathcal{M} have the same domain, \mathcal{M}^{\prime} is a group-reduct if $\operatorname{Aut}\left(\mathcal{M}^{\prime}\right) \geq \operatorname{Aut}(\mathcal{M})$, is proper if $\operatorname{Aut}\left(\mathcal{M}^{\prime}\right)>\operatorname{Aut}(\mathcal{M})$, trivial if $\operatorname{Aut}(\mathcal{M})=\operatorname{Sym}(M)$.

Basic Problem: Find examples of structures with few/no proper non-trivial reducts (in either or both senses).

Overview of Talk

- Reducts of ω-categorical structures.
- Non- ω-categorical example with no proper non-trivial reducts (both senses).
- Other possible examples (e.g. for strongly minimal sets).

The first is work of Cameron, Thomas, and other authors. The last two are joint work with Manuel Bodirsky.

Overview of Talk

- Reducts of ω-categorical structures.
- Non- ω-categorical example with no proper non-trivial reducts (both senses).
- Other possible examples (e.g. for strongly minimal sets).

The first is work of Cameron, Thomas, and other authors. The last two are joint work with Manuel Bodirsky.

Group-theoretic interpretation: \mathcal{M} has no proper non-trivial group-reducts if and only if $\operatorname{Aut}(\mathcal{M})$ is maximal-closed in $\operatorname{Sym}(M)$.

Overview of Talk

- Reducts of ω-categorical structures.
- Non- ω-categorical example with no proper non-trivial reducts (both senses).
- Other possible examples (e.g. for strongly minimal sets).

The first is work of Cameron, Thomas, and other authors. The last two are joint work with Manuel Bodirsky.

Group-theoretic interpretation: \mathcal{M} has no proper non-trivial group-reducts if and only if $\operatorname{Aut}(\mathcal{M})$ is maximal-closed in $\operatorname{Sym}(M)$.

Remark. There are many (abstractly) maximal subgroups of $\operatorname{Sym}(\mathbb{N})$, e.g. stabilisers of ultrafilters on \mathbb{N} (so $2^{2^{\aleph_{0}}}$ up to conjugacy).

Recall: A permutation group (G, X) is primitive if there is no proper non-trivial G-invariant equivalence relation on X.

Remarks.

- If \mathcal{M} is ω-categorical, then the two notions of reduct coincide (Ryll-Nardzewski), and we just call them 'reducts'.

Recall: A permutation group (G, X) is primitive if there is no proper non-trivial G-invariant equivalence relation on X.

Remarks.

- If \mathcal{M} is ω-categorical, then the two notions of reduct coincide (Ryll-Nardzewski), and we just call them 'reducts'.
- If P is a finite subset of M, then (M, P) has no proper non-trivial reducts (and intransitive maximal-closed subgroups of $\operatorname{Sym}(M)$ all arise like this).

Recall: A permutation group (G, X) is primitive if there is no proper non-trivial G-invariant equivalence relation on X.

Remarks.

- If \mathcal{M} is ω-categorical, then the two notions of reduct coincide (Ryll-Nardzewski), and we just call them 'reducts'.
- If P is a finite subset of M, then (M, P) has no proper non-trivial reducts (and intransitive maximal-closed subgroups of $\operatorname{Sym}(M)$ all arise like this).
- If E is a proper non-trivial equivalence relation on M with all classes of the same size then (M, E) has no proper non-trivial reducts (and transitive imprimitive maximal closed groups all arise like this.)

Recall: A permutation group (G, X) is primitive if there is no proper non-trivial G-invariant equivalence relation on X.

Remarks.

- If \mathcal{M} is ω-categorical, then the two notions of reduct coincide (Ryll-Nardzewski), and we just call them 'reducts'.
- If P is a finite subset of M, then (M, P) has no proper non-trivial reducts (and intransitive maximal-closed subgroups of $\operatorname{Sym}(M)$ all arise like this).
- If E is a proper non-trivial equivalence relation on M with all classes of the same size then (M, E) has no proper non-trivial reducts (and transitive imprimitive maximal closed groups all arise like this.)
- If $G<\operatorname{Sym}(\mathbb{N})$ is maximal-closed and has more than one orbit on the collection of k-element sets, then $G=\operatorname{Aut}(\Gamma)$ for some k-uniform hypergraph Γ with vertex set \mathbb{N}.

Recall: A permutation group (G, X) is primitive if there is no proper non-trivial G-invariant equivalence relation on X.

Remarks.

- If \mathcal{M} is ω-categorical, then the two notions of reduct coincide (Ryll-Nardzewski), and we just call them 'reducts'.
- If P is a finite subset of M, then (M, P) has no proper non-trivial reducts (and intransitive maximal-closed subgroups of $\operatorname{Sym}(M)$ all arise like this).
- If E is a proper non-trivial equivalence relation on M with all classes of the same size then (M, E) has no proper non-trivial reducts (and transitive imprimitive maximal closed groups all arise like this.)
- If $G<\operatorname{Sym}(\mathbb{N})$ is maximal-closed and has more than one orbit on the collection of k-element sets, then $G=\operatorname{Aut}(\Gamma)$ for some k-uniform hypergraph Γ with vertex set \mathbb{N}.
So we are interested in maximal-closed subgroups of $\operatorname{Sym}(\mathbb{N})$ which act primitively on \mathbb{N}.

Omega-categoricity

Theorem (Cameron, 1976)
The only proper non-trivial reducts of $(\mathbb{Q},<)$ are

- (\mathbb{Q}, B) (ternary betweenness, ' x is between y and z ')
- (\mathbb{Q}, K) (ternary circular order K induced from $<$)
- (\mathbb{Q}, S) (quaternary separation relation, or K considered up to reversal).

Omega-categoricity

Theorem (Cameron, 1976)
The only proper non-trivial reducts of $(\mathbb{Q},<)$ are

- (\mathbb{Q}, B) (ternary betweenness, ' x is between y and z ')
- (\mathbb{Q}, K) (ternary circular order K induced from $<$)
- (\mathbb{Q}, S) (quaternary separation relation, or K considered up to reversal).

BUT (Junker, Ziegler, 2008) $(\mathbb{Q},<0)$ has 116 reducts!

Omega-categoricity - homogeneous graphs

Theorem (Thomas, 1991)

(i) The only proper non-trivial reducts of the random graph (Γ, R) are

- (Γ, B) (B ternary, the random graph up to anti-isomorphism)
- (\mathbb{Q}, K) (K ternary, the homogeneous 'two-graph' induced from R, a triple satisfying K iff its entries are distinct and it contains an odd number of graph edges)
- (\mathbb{Q}, S) (the above homogeneous two-graph up to anti-isomorphism)
(ii) For $n \geq 3$, the generic K_{n}-free graph has no proper non-trivial reducts.
- Bennett (PhD, Rutgers, 1997): Result for random tournament like that for random graph (3 proper non-trivial reducts).
- (Pach, Pinsker, Pluhár, Pongrácz, Szabó) Similar result for generic poset (3 reducts).
- Thomas (1996): Classification of reducts of random hypergraphs.

Key tool (in treatments of such results by Bodirsky, Pinsker, Tsankov, motivated by constraint satisfaction problems (CSPs)):

Definition

Let \mathcal{C} be a class of finite relational structures with a language including $<$ (interpreted by a total order). Then \mathcal{C} has the Ramsey Property if for every $A, B \in \mathcal{C}$ and positive integer k, there is $D \in \mathcal{C}$ such that for every colouring with k colours of the copies of A in D, there is a copy of B in D all of whose substructures isomorphic to A have the same colour. In Ramsey notation,

$$
D \rightarrow(B)_{A}^{k}
$$

For all the above structures \mathcal{M} (random graph, random hypergraph, etc.) there is a Fraïssé-homogeneous expansion $\mathcal{M}^{\prime}=(\mathcal{M},<)$ by a total order such that the Age $\left(\mathcal{M}^{\prime}\right)$ (the class of finite structures which embed in \mathcal{M}^{\prime}) is a Ramsey class.

For all the above structures \mathcal{M} (random graph, random hypergraph, etc.) there is a Fraïssé-homogeneous expansion $\mathcal{M}^{\prime}=(\mathcal{M},<)$ by a total order such that the Age $\left(\mathcal{M}^{\prime}\right)$ (the class of finite structures which embed in \mathcal{M}^{\prime}) is a Ramsey class.

Remark. By Kechris-Pestov-Todorcevic, if \mathcal{C} is as above and \mathcal{M} is the Fraïssé limit, then $\operatorname{Aut}(\mathcal{M})$ is extremely amenable: every continuous action of $\operatorname{Aut}(\mathcal{M})$ on a compact Hausdorff space has a fixed point.

Other ω-categorical structures where reducts are describable:

- Strictly minimal sets (Cherlin-Harrington-Lachlan + Zilber)

Other ω-categorical structures where reducts are describable:

- Strictly minimal sets (Cherlin-Harrington-Lachlan + Zilber)
- Smoothly approximable rank 1 Lie geometries.

Other ω-categorical structures where reducts are describable:

- Strictly minimal sets (Cherlin-Harrington-Lachlan + Zilber)
- Smoothly approximable rank 1 Lie geometries.
- Cases where permutation group theory (e.g. Jordan groups see later) is applicable.

Other ω-categorical structures where reducts are describable:

- Strictly minimal sets (Cherlin-Harrington-Lachlan + Zilber)
- Smoothly approximable rank 1 Lie geometries.
- Cases where permutation group theory (e.g. Jordan groups see later) is applicable.

Conjecture of Thomas (1991): If \mathcal{M} is a Fraïssé-homogeneous structure over a finite relational language, then \mathcal{M} has just finitely many reducts.

Reducts of non- ω-categorical structures.

An example.

Let (T, R) be the unique degree 3 graph-theoretic tree. Two rays (infinite one-way paths) are equivalent if they have infinitely many common vertices. The equivalence classes are called ends. Let M^{+} be the set of ends of (T, R).

Reducts of non- ω-categorical structures.

An example.

Let (T, R) be the unique degree 3 graph-theoretic tree. Two rays (infinite one-way paths) are equivalent if they have infinitely many common vertices. The equivalence classes are called ends. Let M^{+} be the set of ends of (T, R).
Define $D(x, y ; z, w)$ to hold on M^{+}iff one of

- $x=y \wedge x \neq z \wedge x \neq w$
- $z=w \wedge x \neq z \wedge y \neq z$
- x, y, z, w are distinct, and there are rays $\hat{x} \in x, \hat{y} \in y$ etc. such that $\hat{x} \cup \hat{y}$ and $\hat{z} \cup \hat{w}$ are disjoint two-way infinite paths.

Reducts of non- ω-categorical structures.

An example.

Let (T, R) be the unique degree 3 graph-theoretic tree. Two rays (infinite one-way paths) are equivalent if they have infinitely many common vertices. The equivalence classes are called ends. Let M^{+} be the set of ends of (T, R).
Define $D(x, y ; z, w)$ to hold on M^{+}iff one of

- $x=y \wedge x \neq z \wedge x \neq w$
- $z=w \wedge x \neq z \wedge y \neq z$
- x, y, z, w are distinct, and there are rays $\hat{x} \in x, \hat{y} \in y$ etc. such that $\hat{x} \cup \hat{y}$ and $\hat{z} \cup \hat{w}$ are disjoint two-way infinite paths.
Let M be a countable dense subset of M^{+}(i.e. for each $a \in T$ there are $x, y, z \in M$ and rays $\hat{x} \in x, \hat{y} \in y$ and $\hat{z} \in z$ such that $\hat{x} \cup \hat{y}, \hat{y} \cup \hat{z}$, and $\hat{x} \cup \hat{z}$ are all two-way infinite paths through a). Put $\mathcal{M}:=(M, D)$.

Observations on (M, D).

- The above determines (M, D) uniquely up to isomorphism (back-and-forth).

Observations on (M, D).

- The above determines (M, D) uniquely up to isomorphism (back-and-forth).
- The tree (T, R) is interpretable in (M, D) : vertices are equivalence classes of triples.

Observations on (M, D).

- The above determines (M, D) uniquely up to isomorphism (back-and-forth).
- The tree (T, R) is interpretable in (M, D) : vertices are equivalence classes of triples.
- Hence, (M, D) is not ω-categorical.

Observations on (M, D).

- The above determines (M, D) uniquely up to isomorphism (back-and-forth).
- The tree (T, R) is interpretable in (M, D) : vertices are equivalence classes of triples.
- Hence, (M, D) is not ω-categorical.
- $\operatorname{Aut}(M, D)$ is 3-transitive.

Observations on (M, D).

- The above determines (M, D) uniquely up to isomorphism (back-and-forth).
- The tree (T, R) is interpretable in (M, D) : vertices are equivalence classes of triples.
- Hence, (M, D) is not ω-categorical.
- $\operatorname{Aut}(M, D)$ is 3-transitive.
- (M, D) has the strict order property and is NIP. Indeed

Observations on (M, D).

- The above determines (M, D) uniquely up to isomorphism (back-and-forth).
- The tree (T, R) is interpretable in (M, D) : vertices are equivalence classes of triples.
- Hence, (M, D) is not ω-categorical.
- $\operatorname{Aut}(M, D)$ is 3-transitive.
- (M, D) has the strict order property and is NIP. Indeed
- Let K be a countable model of $T h\left(\mathbb{Q}_{2}\right)$ with valuation ring \mathcal{O} having maximal ideal \mathcal{M}. On $\mathrm{PG}_{1}(K)$ (viewed as $K \cup\{\infty\}$), define $D(x, y ; z, w)$ to hold if and only if the cross-ratio $\frac{(x-z)(y-w)}{(x-w)(y-z)} \in 1+\mathcal{M}$. Then

$$
\left(\mathrm{PG}_{1}(K), D\right) \cong(M, D)
$$

Observations on (M, D).

- The above determines (M, D) uniquely up to isomorphism (back-and-forth).
- The tree (T, R) is interpretable in (M, D) : vertices are equivalence classes of triples.
- Hence, (M, D) is not ω-categorical.
- $\operatorname{Aut}(M, D)$ is 3-transitive.
- (M, D) has the strict order property and is NIP. Indeed
- Let K be a countable model of $T h\left(\mathbb{Q}_{2}\right)$ with valuation ring \mathcal{O} having maximal ideal \mathcal{M}. On $\mathrm{PG}_{1}(K)$ (viewed as $K \cup\{\infty\}$), define $D(x, y ; z, w)$ to hold if and only if the cross-ratio $\frac{(x-z)(y-w)}{(x-w)(y-z)} \in 1+\mathcal{M}$. Then

$$
\left(\mathrm{PG}_{1}(K), D\right) \cong(M, D)
$$

- 'D-relations' were axiomatised by Adeleke and Neumann.

Theorem (Bodirsky, M (2013))
The structure (M, D) has no proper non-trivial definable reducts or group-reducts.

Theorem (Bodirsky, M (2013))

The structure (M, D) has no proper non-trivial definable reducts or group-reducts.
Remark. This says in particular that $\operatorname{Aut}(M, D)$ is a maximal-closed subgroup of $\operatorname{Sym}(M)$ which is not oligomorphic. (A permutation group G on countably infinite M is oligomorphic if G has finitely many orbits on M^{n} for all n.)

Theorem (Bodirsky, M (2013))

The structure (M, D) has no proper non-trivial definable reducts or group-reducts.
Remark. This says in particular that $\operatorname{Aut}(M, D)$ is a maximal-closed subgroup of $\operatorname{Sym}(M)$ which is not oligomorphic. (A permutation group G on countably infinite M is oligomorphic if G has finitely many orbits on M^{n} for all n.)

Problem: Find other kinds of non- ω-categorical structures with no proper non-trivial reducts of either kind.

Theorem (Bodirsky, M (2013))

The structure (M, D) has no proper non-trivial definable reducts or group-reducts.
Remark. This says in particular that $\operatorname{Aut}(M, D)$ is a maximal-closed subgroup of $\operatorname{Sym}(M)$ which is not oligomorphic. (A permutation group G on countably infinite M is oligomorphic if G has finitely many orbits on M^{n} for all n.)

Problem: Find other kinds of non- ω-categorical structures with no proper non-trivial reducts of either kind.

Guess: The above example (M, D) still works, starting from a higher degree tree.

Automorphisms of (M, D).

If $a \in T$, and $x \in M$ there is a unique ray $x_{a} \in x$ starting at a. There is an equivalence relation E_{a} on M : put $E_{a}(x, y)$ iff x_{a} and y_{a} have a common edge of T. An E_{a}-class is called a cone (at a). Now:

- for each $a \in T$ there are three E_{a}-classes, with $\operatorname{Aut}(\mathcal{M})_{a}$ inducing S_{3} on them;

Automorphisms of (M, D).

If $a \in T$, and $x \in M$ there is a unique ray $x_{a} \in x$ starting at a. There is an equivalence relation E_{a} on M : put $E_{a}(x, y)$ iff x_{a} and y_{a} have a common edge of T. An E_{a}-class is called a cone (at a). Now:

- for each $a \in T$ there are three E_{a}-classes, with $\operatorname{Aut}(\mathcal{M})_{a}$ inducing S_{3} on them;
- the union of two cones at a is a cone (at a neighbour of a); so

Automorphisms of (M, D).

If $a \in T$, and $x \in M$ there is a unique ray $x_{a} \in x$ starting at a. There is an equivalence relation E_{a} on M : put $E_{a}(x, y)$ iff x_{a} and y_{a} have a common edge of T. An E_{a}-class is called a cone (at a). Now:

- for each $a \in T$ there are three E_{a}-classes, with $\operatorname{Aut}(\mathcal{M})_{a}$ inducing S_{3} on them;
- the union of two cones at a is a cone (at a neighbour of a); so
- the complement of a cone is a cone;

Automorphisms of (M, D).

If $a \in T$, and $x \in M$ there is a unique ray $x_{a} \in x$ starting at a. There is an equivalence relation E_{a} on M : put $E_{a}(x, y)$ iff x_{a} and y_{a} have a common edge of T. An E_{a}-class is called a cone (at a). Now:

- for each $a \in T$ there are three E_{a}-classes, with $\operatorname{Aut}(\mathcal{M})_{a}$ inducing S_{3} on them;
- the union of two cones at a is a cone (at a neighbour of a); so
- the complement of a cone is a cone;
- if U is a cone, then $\operatorname{Aut}(U, D)$ is transitive, and any automorphism of (U, D) can be extended by $\mathrm{id}_{M \backslash U}$ to an aut. of (M, D).

Automorphisms of (M, D).

If $a \in T$, and $x \in M$ there is a unique ray $x_{a} \in x$ starting at a. There is an equivalence relation E_{a} on M : put $E_{a}(x, y)$ iff x_{a} and y_{a} have a common edge of T. An E_{a}-class is called a cone (at a). Now:

- for each $a \in T$ there are three E_{a}-classes, with $\operatorname{Aut}(\mathcal{M})_{a}$ inducing S_{3} on them;
- the union of two cones at a is a cone (at a neighbour of a); so
- the complement of a cone is a cone;
- if U is a cone, then $\operatorname{Aut}(U, D)$ is transitive, and any automorphism of (U, D) can be extended by $\mathrm{id}_{M \backslash U}$ to an aut. of (M, D).
- if $A \subset M$ is finite, then $\operatorname{Aut}(M)_{(A)}$ (the pointwise stabiliser of A) has no finite orbits on $M \backslash A$; hence $\operatorname{acl}(A)=A$.

Permutation groups.

Definition

Let (G, X) be a permutation group (group G acting faithfully on $X)$.

- If $A \subset X$ with $|A|>1$, then A is a Jordan set if $G_{(X \backslash A)}$ is transitive on A. It is proper if $A \neq X$, and if $|X \backslash A|=n \in \mathbb{N}$, then (G, X) is not $(n+1)$-transitive.
- A Jordan group is a transitive permutation group with a proper Jordan set.

Adeleke, M, Neumann $(1995,1996)$ Structure theorem for primitive Jordan permutation groups. In particular,

Theorem

Let G be a 3-transitive but not highly transitive Jordan permutation group on an infinite set X. Then G preserves on X one of

- a 4-ary separation relation (from a total order on X)

Adeleke, M, Neumann $(1995,1996)$ Structure theorem for primitive Jordan permutation groups. In particular,

Theorem
Let G be a 3-transitive but not highly transitive Jordan permutation group on an infinite set X. Then G preserves on X one of

- a 4-ary separation relation (from a total order on X)
- a D-relation on X (in which every cone is a Jordan set)

Adeleke, M, Neumann $(1995,1996)$ Structure theorem for primitive Jordan permutation groups. In particular,

Theorem
Let G be a 3-transitive but not highly transitive Jordan permutation group on an infinite set X. Then G preserves on X one of

- a 4-ary separation relation (from a total order on X)
- a D-relation on X (in which every cone is a Jordan set)
- a Steiner k-system on $X($ some $k>1)$

Adeleke, M, Neumann $(1995,1996)$ Structure theorem for primitive Jordan permutation groups. In particular,

Theorem
Let G be a 3-transitive but not highly transitive Jordan permutation group on an infinite set X. Then G preserves on X one of

- a 4-ary separation relation (from a total order on X)
- a D-relation on X (in which every cone is a Jordan set)
- a Steiner k-system on X (some $k>1$)
- a 'limit' of Steiner systems on X.

Adeleke, M, Neumann $(1995,1996)$ Structure theorem for primitive Jordan permutation groups. In particular,

Theorem

Let G be a 3-transitive but not highly transitive Jordan permutation group on an infinite set X. Then G preserves on X one of

- a 4-ary separation relation (from a total order on X)
- a D-relation on X (in which every cone is a Jordan set)
- a Steiner k-system on X (some $k>1$)
- a 'limit' of Steiner systems on X.

Steiner k-system on X : collection of 'blocks' (subsets of X all of the same size $>k$) such that any k elements of X lie on a unique block.

Sketch proof (that (M, D) has no proper non-trivial group-reducts).

Sketch proof (that (M, D) has no proper non-trivial group-reducts).

Any cone of (M, D) is a Jordan set for $G:=\operatorname{Aut}(M, D)$. Let \mathcal{M}^{\prime} be a non-trivial group-reduct of (M, D). Then $\operatorname{Aut}(M, D) \leq \operatorname{Aut}\left(\mathcal{M}^{\prime}\right)<\operatorname{Sym}(M)$.

Sketch proof (that (M, D) has no proper non-trivial group-reducts).

Any cone of (M, D) is a Jordan set for $G:=\operatorname{Aut}(M, D)$. Let \mathcal{M}^{\prime} be a non-trivial group-reduct of (M, D). Then $\operatorname{Aut}(M, D) \leq \operatorname{Aut}\left(\mathcal{M}^{\prime}\right)<\operatorname{Sym}(M)$.

Also, $H:=\operatorname{Aut}\left(M^{\prime}\right)$ is a 3-transitive but not highly transitive Jordan group.

Sketch proof (that (M, D) has no proper non-trivial group-reducts).

Any cone of (M, D) is a Jordan set for $G:=\operatorname{Aut}(M, D)$. Let \mathcal{M}^{\prime} be a non-trivial group-reduct of (M, D). Then $\operatorname{Aut}(M, D) \leq \operatorname{Aut}\left(\mathcal{M}^{\prime}\right)<\operatorname{Sym}(M)$.

Also, $H:=\operatorname{Aut}\left(M^{\prime}\right)$ is a 3-transitive but not highly transitive Jordan group.

Apply above classification. Rule out all but the D-relation case, and show that if H preserves a D-relation D^{\prime} on M then it has the same cones as (M, D), so $D^{\prime}=D$.

For example, suppose H preserves a Steiner k-system on M. Let $a_{1}, \ldots, a_{k} \in M$ be distinct, and let l be the block containing a_{1}, \ldots, a_{k}.

For example, suppose H preserves a Steiner k-system on M. Let $a_{1}, \ldots, a_{k} \in M$ be distinct, and let l be the block containing a_{1}, \ldots, a_{k}.

Let $b_{k} \in M$ not lie on l, and let m be the block through $a_{1}, \ldots, a_{k-1}, b_{k}$. Choose $a_{k+1} \notin\left\{a_{1}, \ldots, a_{k}\right\}$ on l and $b_{k+1} \notin\left\{a_{1}, \ldots, a_{k-1}, b_{k}\right\}$ on m.

For example, suppose H preserves a Steiner k-system on M. Let $a_{1}, \ldots, a_{k} \in M$ be distinct, and let l be the block containing a_{1}, \ldots, a_{k}.

Let $b_{k} \in M$ not lie on l, and let m be the block through $a_{1}, \ldots, a_{k-1}, b_{k}$. Choose $a_{k+1} \notin\left\{a_{1}, \ldots, a_{k}\right\}$ on l and $b_{k+1} \notin\left\{a_{1}, \ldots, a_{k-1}, b_{k}\right\}$ on m.

Now l is the unique block containing $a_{1}, \ldots, a_{k-2}, a_{k}, a_{k+1}$, and m the unique block containing $a_{1}, \ldots, a_{k-2}, b_{k}, b_{k+1}$, and these blocks have common points a_{1}, \ldots, a_{k-1}.

For example, suppose H preserves a Steiner k-system on M. Let $a_{1}, \ldots, a_{k} \in M$ be distinct, and let l be the block containing a_{1}, \ldots, a_{k}.

Let $b_{k} \in M$ not lie on l, and let m be the block through $a_{1}, \ldots, a_{k-1}, b_{k}$. Choose $a_{k+1} \notin\left\{a_{1}, \ldots, a_{k}\right\}$ on l and $b_{k+1} \notin\left\{a_{1}, \ldots, a_{k-1}, b_{k}\right\}$ on m.

Now l is the unique block containing $a_{1}, \ldots, a_{k-2}, a_{k}, a_{k+1}$, and m the unique block containing $a_{1}, \ldots, a_{k-2}, b_{k}, b_{k+1}$, and these blocks have common points a_{1}, \ldots, a_{k-1}.

Put $A:=\left\{a_{1}, \ldots, a_{k-2}, a_{k}, a_{k+1}, b_{k}, b_{k+1}\right\}$. Then a_{k-1} lies in a singleton orbit of $H_{(A)}$. This is impossible as $a_{k-1} \notin A$ and $H \geq G$.

To show (M, D) has no proper non-trivial definable reducts. Let \mathcal{M}^{\prime} be a non-trivial definable reduct of (M, D).

Claim: It suffices to show that the set of cones of (M, D) is uniformly definable in (M, D), i.e. there are formulas $\phi\left(x, y_{1}, \ldots, y_{k}\right)$ and $\psi\left(y_{1}, \ldots, y_{k}\right)$ over \emptyset (in the language of \mathcal{M}^{\prime}) such that the set of cones of (M, D) is exactly

$$
\left\{\phi\left(M^{\prime}, \bar{a}\right): \bar{a} \in M^{k}, \mathcal{M}^{\prime} \models \psi(\bar{a})\right\} .
$$

Proof: Easy to check that the cones determine D.

Step 1. Show that some cone of (M, D) is definable in \mathcal{M}^{\prime}, by some formula $\phi(x, \bar{a})$. Hence, all cones are \mathcal{M}^{\prime}-definable via ϕ (as $\operatorname{Aut}\left(\mathcal{M}^{\prime}\right) \geq \operatorname{Aut}(M, D)$, which is transitive on the set of cones). Now aim to modify ϕ, and find ψ.

Step 1. Show that some cone of (M, D) is definable in \mathcal{M}^{\prime}, by some formula $\phi(x, \bar{a})$. Hence, all cones are \mathcal{M}^{\prime}-definable via ϕ (as $\operatorname{Aut}\left(\mathcal{M}^{\prime}\right) \geq \operatorname{Aut}(M, D)$, which is transitive on the set of cones). Now aim to modify ϕ, and find ψ.

Step 2. Arrange that no element of \bar{a} lies in $\phi(M, \bar{a})$, and let $\psi_{1}(\bar{a})$ express this.

Step 1. Show that some cone of (M, D) is definable in \mathcal{M}^{\prime}, by some formula $\phi(x, \bar{a})$. Hence, all cones are \mathcal{M}^{\prime}-definable via ϕ (as $\operatorname{Aut}\left(\mathcal{M}^{\prime}\right) \geq \operatorname{Aut}(M, D)$, which is transitive on the set of cones). Now aim to modify ϕ, and find ψ.

Step 2. Arrange that no element of \bar{a} lies in $\phi(M, \bar{a})$, and let $\psi_{1}(\bar{a})$ express this.

Step 3. Let $\psi_{2}(\bar{y})$ express also that the complement of the set $\phi(M, \bar{y})$ has the form $\phi\left(M, \overline{y^{\prime}}\right)$ for some \bar{y}^{\prime}. (Recall that the complement of a cone in (M, D) is also a cone.)

Step 1. Show that some cone of (M, D) is definable in \mathcal{M}^{\prime}, by some formula $\phi(x, \bar{a})$. Hence, all cones are \mathcal{M}^{\prime}-definable via ϕ (as $\operatorname{Aut}\left(\mathcal{M}^{\prime}\right) \geq \operatorname{Aut}(M, D)$, which is transitive on the set of cones). Now aim to modify ϕ, and find ψ.

Step 2. Arrange that no element of \bar{a} lies in $\phi(M, \bar{a})$, and let $\psi_{1}(\bar{a})$ express this.

Step 3. Let $\psi_{2}(\bar{y})$ express also that the complement of the set $\phi(M, \bar{y})$ has the form $\phi\left(M, \overline{y^{\prime}}\right)$ for some \bar{y}^{\prime}. (Recall that the complement of a cone in (M, D) is also a cone.)
Step 4. Let $\psi_{3}(\bar{y})$ express a consequence of the Jordan property of cones. Namely,

$$
\left.\forall \bar{y}^{\prime}\left(\bigwedge_{i=1}^{n} \neg \phi\left(y_{i}^{\prime}, \bar{y}\right) \rightarrow\left(\left(\phi\left(M, \bar{y}^{\prime}\right) \supseteq \phi(M, \bar{y})\right) \vee \phi\left(M, \bar{y}^{\prime}\right) \cap \phi(M, \bar{y})=\emptyset\right)\right)\right)
$$

Step 1. Show that some cone of (M, D) is definable in \mathcal{M}^{\prime}, by some formula $\phi(x, \bar{a})$. Hence, all cones are \mathcal{M}^{\prime}-definable via ϕ (as $\operatorname{Aut}\left(\mathcal{M}^{\prime}\right) \geq \operatorname{Aut}(M, D)$, which is transitive on the set of cones). Now aim to modify ϕ, and find ψ.

Step 2. Arrange that no element of \bar{a} lies in $\phi(M, \bar{a})$, and let $\psi_{1}(\bar{a})$ express this.

Step 3. Let $\psi_{2}(\bar{y})$ express also that the complement of the set $\phi(M, \bar{y})$ has the form $\phi\left(M, \overline{y^{\prime}}\right)$ for some \bar{y}^{\prime}. (Recall that the complement of a cone in (M, D) is also a cone.)
Step 4. Let $\psi_{3}(\bar{y})$ express a consequence of the Jordan property of cones. Namely,
$\left.\forall \bar{y}^{\prime}\left(\bigwedge_{i=1}^{n} \neg \phi\left(y_{i}^{\prime}, \bar{y}\right) \rightarrow\left(\left(\phi\left(M, \bar{y}^{\prime}\right) \supseteq \phi(M, \bar{y})\right) \vee \phi\left(M, \bar{y}^{\prime}\right) \cap \phi(M, \bar{y})=\emptyset\right)\right)\right)$.
Step 5. Reduce to $l(\bar{y})=4$. Reduce to case when $\phi\left(M, \bar{a}^{\prime}\right)$ is a cone or union of two cones at adjacent nodes. Finish.

More on reducts

Partially order definable reducts of \mathcal{M}, putting $\mathcal{M}_{1} \leq \mathcal{M}_{2}$ iff \mathcal{M}_{2} is \emptyset-definable in \mathcal{M}_{1} (factoring out equi-definability). Partially order group-reducts by group inclusion.

More on reducts

Partially order definable reducts of \mathcal{M}, putting $\mathcal{M}_{1} \leq \mathcal{M}_{2}$ iff \mathcal{M}_{2} is \emptyset-definable in \mathcal{M}_{1} (factoring out equi-definability). Partially order group-reducts by group inclusion.

Lemma
Let \mathcal{M} be saturated.
(i) The partial order of definable reducts of \mathcal{M} embeds into the partial order of group-reducts of \mathcal{M}.
(ii) If $\operatorname{Aut}(\mathcal{M})$ is maximal-closed, then \mathcal{M} has no proper non-trivial definable reducts.

More on reducts

Partially order definable reducts of \mathcal{M}, putting $\mathcal{M}_{1} \leq \mathcal{M}_{2}$ iff \mathcal{M}_{2} is \emptyset-definable in \mathcal{M}_{1} (factoring out equi-definability). Partially order group-reducts by group inclusion.

Lemma
Let \mathcal{M} be saturated.
(i) The partial order of definable reducts of \mathcal{M} embeds into the partial order of group-reducts of \mathcal{M}.
(ii) If $\operatorname{Aut}(\mathcal{M})$ is maximal-closed, then \mathcal{M} has no proper non-trivial definable reducts.
Proof. Easy compactness and saturation argument.

Reducts of strongly minimal sets

Problem. Find strongly minimal sets (not ω-categorical) with no proper non-trivial reducts of either kind.

Reducts of strongly minimal sets

Problem. Find strongly minimal sets (not ω-categorical) with no proper non-trivial reducts of either kind.

Strong minimality is preserved by reducts, so structural results for strongly minimal sets are relevant.

Reducts of strongly minimal sets

Problem. Find strongly minimal sets (not ω-categorical) with no proper non-trivial reducts of either kind.

Strong minimality is preserved by reducts, so structural results for strongly minimal sets are relevant.

First try. Let (T, R) be the degree 3 tree (strongly minimal, disintegrated, i.e. $\operatorname{acl}(A)=\bigcup(\operatorname{acl}(a): a \in A)$ for any $A)$. The 'distance 2' graph $T^{(2)}$ is a proper non-trivial definable and group reduct. $T^{(2)}$ is the disjoint union of two graphs, each built from copies of K_{3} in a treelike way, three copies of K_{3} containing each vertex. There is also a (non-definable) group-reduct, the equivalence relation with 2 classes corresponding to 'even distance apart'. Any other reducts?

Second try. Let $k, l \in \mathbb{N}$ with $k \geq 2$ and $l \geq 3$. Let $\Gamma_{k, l}$ be the graph consisting of copies of K_{k+1} put together in a treelike way, with l copies of K_{k+1} containing each vertex.

Second try. Let $k, l \in \mathbb{N}$ with $k \geq 2$ and $l \geq 3$. Let $\Gamma_{k, l}$ be the graph consisting of copies of K_{k+1} put together in a treelike way, with l copies of K_{k+1} containing each vertex.

The graph $\Gamma_{k, l}$ is vertex transitive of finite degree $k l$, so strongly minimal disintegrated. In fact these are essentially the finite degree distance transitive graphs (the aut. group is transitive on the pairs of vertices at any given distance).

Second try. Let $k, l \in \mathbb{N}$ with $k \geq 2$ and $l \geq 3$. Let $\Gamma_{k, l}$ be the graph consisting of copies of K_{k+1} put together in a treelike way, with l copies of K_{k+1} containing each vertex.

The graph $\Gamma_{k, l}$ is vertex transitive of finite degree $k l$, so strongly minimal disintegrated. In fact these are essentially the finite degree distance transitive graphs (the aut. group is transitive on the pairs of vertices at any given distance).

Question. Does $\Gamma_{k, l}$ have proper non-trivial group-reducts?

Second try. Let $k, l \in \mathbb{N}$ with $k \geq 2$ and $l \geq 3$. Let $\Gamma_{k, l}$ be the graph consisting of copies of K_{k+1} put together in a treelike way, with l copies of K_{k+1} containing each vertex.

The graph $\Gamma_{k, l}$ is vertex transitive of finite degree $k l$, so strongly minimal disintegrated. In fact these are essentially the finite degree distance transitive graphs (the aut. group is transitive on the pairs of vertices at any given distance).

Question. Does $\Gamma_{k, l}$ have proper non-trivial group-reducts?

Theorem (Bodirsky, M)
$\mathcal{M}:=\Gamma_{k, l}$ has no proper non-trivial definable reducts.

Sketch Proof.

1. Any definable reduct \mathcal{M}^{\prime} is strongly minimal and disintegrated, so if \mathcal{M}^{\prime} is non-trivial then $\left|\operatorname{acl}_{\mathcal{M}^{\prime}}(a)\right|>1$ for any a. Hence in \mathcal{M}^{\prime}, some set $\phi(M, a)$ has finite size greater than 1 . By distance transitivity, can assume there are $1 \leq n_{1}<\ldots<n_{t} \in \mathbb{N}$ such that $\phi(x, y)$ is ' $d(x, y) \in\left\{n_{1}, \ldots, n_{t}\right\}$ '.

Sketch Proof.

1. Any definable reduct \mathcal{M}^{\prime} is strongly minimal and disintegrated, so if \mathcal{M}^{\prime} is non-trivial then $\left|\operatorname{acl}_{\mathcal{M}^{\prime}}(a)\right|>1$ for any a. Hence in \mathcal{M}^{\prime}, some set $\phi(M, a)$ has finite size greater than 1 . By distance transitivity, can assume there are $1 \leq n_{1}<\ldots<n_{t} \in \mathbb{N}$ such that $\phi(x, y)$ is ' $d(x, y) \in\left\{n_{1}, \ldots, n_{t}\right\}$ '.
2. Put $n:=n_{t}$. Show that for any vertices x, y,

$$
d(x, y) \leq 2 n \Leftrightarrow \mathcal{M}^{\prime} \mid=\exists z(\phi(x, z) \wedge \phi(y, z)) .
$$

Thus the balls $B_{2 n}(x)$ are uniformly definable.

Sketch Proof.

1. Any definable reduct \mathcal{M}^{\prime} is strongly minimal and disintegrated, so if \mathcal{M}^{\prime} is non-trivial then $\left|\operatorname{acl}_{\mathcal{M}^{\prime}}(a)\right|>1$ for any a. Hence in \mathcal{M}^{\prime}, some set $\phi(M, a)$ has finite size greater than 1 . By distance transitivity, can assume there are $1 \leq n_{1}<\ldots<n_{t} \in \mathbb{N}$ such that $\phi(x, y)$ is ' $d(x, y) \in\left\{n_{1}, \ldots, n_{t}\right\}$ '.
2. Put $n:=n_{t}$. Show that for any vertices x, y,

$$
d(x, y) \leq 2 n \Leftrightarrow \mathcal{M}^{\prime} \mid=\exists z(\phi(x, z) \wedge \phi(y, z)) .
$$

Thus the balls $B_{2 n}(x)$ are uniformly definable.
3. Show there is some $\gamma \in \mathbb{N}$ such that

$$
x, y \text { are adjacent in } \mathcal{M} \Leftrightarrow B_{2 n}(x) \cap B_{2 n}(y)<\gamma
$$

Problem. Describe reducts of other vertex-transitive (finite degree) connected graphs. Do maximal-closed subgroups of $\operatorname{Sym}(\mathbb{N})$ arise this way?

Problem. Describe reducts of other vertex-transitive (finite degree) connected graphs. Do maximal-closed subgroups of $\operatorname{Sym}(\mathbb{N})$ arise this way?

Non-disintegrated locally modular strongly minimal sets. For finite fields F, vector spaces over F (and projective and affine spaces over F) are ω-categorical, and reducts can be handled by the Cherlin-Harrington-Lachlan and Zilber work.

Problem. Describe reducts of other vertex-transitive (finite degree) connected graphs. Do maximal-closed subgroups of $\operatorname{Sym}(\mathbb{N})$ arise this way?

Non-disintegrated locally modular strongly minimal sets. For finite fields F, vector spaces over F (and projective and affine spaces over F) are ω-categorical, and reducts can be handled by the Cherlin-Harrington-Lachlan and Zilber work.

If V is a vector space over an infinite characteristic 0 field F, there is a reduct (definable and group) (V, R), where

$$
R(x, y) \Leftrightarrow(2 x=y \vee 2 y=x)
$$

Problem. Describe reducts of other vertex-transitive (finite degree) connected graphs. Do maximal-closed subgroups of $\operatorname{Sym}(\mathbb{N})$ arise this way?

Non-disintegrated locally modular strongly minimal sets. For finite fields F, vector spaces over F (and projective and affine spaces over F) are ω-categorical, and reducts can be handled by the Cherlin-Harrington-Lachlan and Zilber work.

If V is a vector space over an infinite characteristic 0 field F, there is a reduct (definable and group) (V, R), where

$$
R(x, y) \Leftrightarrow(2 x=y \vee 2 y=x)
$$

If F has characteristic p, there are proper reducts by viewing V as over the prime subfield.

Further questions

1. Define f on \mathbb{Q} by $f(x, y, z):=x-y+z$. Does (\mathbb{Q}, f) have any proper non-trivial definable reducts?

Further questions

1. Define f on \mathbb{Q} by $f(x, y, z):=x-y+z$. Does (\mathbb{Q}, f) have any proper non-trivial definable reducts?

Note: For each prime p, let v_{p} be the p-adic valuation on \mathbb{Q} and define $C_{p}(x, y, z)$ to hold iff $v_{p}(x-y) \leq v_{p}(y-z)$. The structures $\left(\mathbb{Q}, C_{p}\right)$ are distinct group-reducts.

Further questions

1. Define f on \mathbb{Q} by $f(x, y, z):=x-y+z$. Does (\mathbb{Q}, f) have any proper non-trivial definable reducts?

Note: For each prime p, let v_{p} be the p-adic valuation on \mathbb{Q} and define $C_{p}(x, y, z)$ to hold iff $v_{p}(x-y) \leq v_{p}(y-z)$. The structures $\left(\mathbb{Q}, C_{p}\right)$ are distinct group-reducts.
2. For $2 \leq d \leq \aleph_{0}$, are the groups $\mathrm{AGL}_{d}(\mathbb{Q})$ and $\mathrm{PGL}_{d+1}(\mathbb{Q})$ maximal-closed, in their natural actions? Do the corresponding strongly minimal structures have proper non-trivial definable reducts? (They will be locally modular but not disintegrated.)

Further questions

1. Define f on \mathbb{Q} by $f(x, y, z):=x-y+z$. Does (\mathbb{Q}, f) have any proper non-trivial definable reducts?

Note: For each prime p, let v_{p} be the p-adic valuation on \mathbb{Q} and define $C_{p}(x, y, z)$ to hold iff $v_{p}(x-y) \leq v_{p}(y-z)$. The structures $\left(\mathbb{Q}, C_{p}\right)$ are distinct group-reducts.
2. For $2 \leq d \leq \aleph_{0}$, are the groups $\mathrm{AGL}_{d}(\mathbb{Q})$ and $\mathrm{PGL}_{d+1}(\mathbb{Q})$ maximal-closed, in their natural actions? Do the corresponding strongly minimal structures have proper non-trivial definable reducts? (They will be locally modular but not disintegrated.)
3. Does $\operatorname{Sym}(\mathbb{N})$ have any countable maximal-closed subgroups?

Further questions

1. Define f on \mathbb{Q} by $f(x, y, z):=x-y+z$. Does (\mathbb{Q}, f) have any proper non-trivial definable reducts?

Note: For each prime p, let v_{p} be the p-adic valuation on \mathbb{Q} and define $C_{p}(x, y, z)$ to hold iff $v_{p}(x-y) \leq v_{p}(y-z)$. The structures $\left(\mathbb{Q}, C_{p}\right)$ are distinct group-reducts.
2. For $2 \leq d \leq \aleph_{0}$, are the groups $\mathrm{AGL}_{d}(\mathbb{Q})$ and $\mathrm{PGL}_{d+1}(\mathbb{Q})$ maximal-closed, in their natural actions? Do the corresponding strongly minimal structures have proper non-trivial definable reducts? (They will be locally modular but not disintegrated.)
3. Does $\operatorname{Sym}(\mathbb{N})$ have any countable maximal-closed subgroups?
4. Is every closed proper subgroup of $\operatorname{Sym}(\mathbb{N})$ contained in a maximal-closed subgroup of $\operatorname{Sym}(\mathbb{N})$?

