Countable structures with few reducts

Dugald Macpherson (University of Leeds)

June 15 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It is an **improper** reduct if also \mathcal{M} is a reduct of \mathcal{M}' (so \mathcal{M} and \mathcal{M}' have the same 0-definable relations), and is **trivial** if \mathcal{M}' is a reduct of a pure set, so has automorphism group $\operatorname{Sym}(M)$.

It is an **improper** reduct if also \mathcal{M} is a reduct of \mathcal{M}' (so \mathcal{M} and \mathcal{M}' have the same 0-definable relations), and is **trivial** if \mathcal{M}' is a reduct of a pure set, so has automorphism group $\operatorname{Sym}(M)$.

If \mathcal{M}' and \mathcal{M} have the same domain, \mathcal{M}' is a **group-reduct** if $\operatorname{Aut}(\mathcal{M}') \geq \operatorname{Aut}(\mathcal{M})$, is **proper** if $\operatorname{Aut}(\mathcal{M}') > \operatorname{Aut}(\mathcal{M})$, **trivial** if $\operatorname{Aut}(\mathcal{M}) = \operatorname{Sym}(M)$.

It is an **improper** reduct if also \mathcal{M} is a reduct of \mathcal{M}' (so \mathcal{M} and \mathcal{M}' have the same 0-definable relations), and is **trivial** if \mathcal{M}' is a reduct of a pure set, so has automorphism group $\operatorname{Sym}(M)$.

If \mathcal{M}' and \mathcal{M} have the same domain, \mathcal{M}' is a **group-reduct** if $\operatorname{Aut}(\mathcal{M}') \geq \operatorname{Aut}(\mathcal{M})$, is **proper** if $\operatorname{Aut}(\mathcal{M}') > \operatorname{Aut}(\mathcal{M})$, **trivial** if $\operatorname{Aut}(\mathcal{M}) = \operatorname{Sym}(M)$.

Basic Problem: Find examples of structures with few/no proper non-trivial reducts (in either or both senses).

Overview of Talk

- Reducts of ω -categorical structures.
- Non-ω-categorical example with no proper non-trivial reducts (both senses).
- Other possible examples (e.g. for strongly minimal sets).

The first is work of Cameron, Thomas, and other authors. The last two are joint work with Manuel Bodirsky.

Overview of Talk

- Reducts of ω -categorical structures.
- Non-ω-categorical example with no proper non-trivial reducts (both senses).
- Other possible examples (e.g. for strongly minimal sets).

The first is work of Cameron, Thomas, and other authors. The last two are joint work with Manuel Bodirsky.

Group-theoretic interpretation: \mathcal{M} has no proper non-trivial group-reducts if and only if $\operatorname{Aut}(\mathcal{M})$ is maximal-closed in $\operatorname{Sym}(\mathcal{M})$.

Overview of Talk

- Reducts of ω -categorical structures.
- Non-ω-categorical example with no proper non-trivial reducts (both senses).
- Other possible examples (e.g. for strongly minimal sets).

The first is work of Cameron, Thomas, and other authors. The last two are joint work with Manuel Bodirsky.

Group-theoretic interpretation: \mathcal{M} has no proper non-trivial group-reducts if and only if $\operatorname{Aut}(\mathcal{M})$ is maximal-closed in $\operatorname{Sym}(\mathcal{M})$.

Remark. There are many (abstractly) maximal subgroups of $Sym(\mathbb{N})$, e.g. stabilisers of ultrafilters on \mathbb{N} (so $2^{2^{\aleph_0}}$ up to conjugacy).

Remarks.

 If *M* is ω-categorical, then the two notions of reduct coincide (Ryll-Nardzewski), and we just call them 'reducts'.

・ロト・日本・モート モー うへぐ

Remarks.

- If *M* is ω-categorical, then the two notions of reduct coincide (Ryll-Nardzewski), and we just call them 'reducts'.
- ▶ If P is a finite subset of M, then (M, P) has no proper non-trivial reducts (and intransitive maximal-closed subgroups of Sym(M) all arise like this).

Remarks.

- If *M* is ω-categorical, then the two notions of reduct coincide (Ryll-Nardzewski), and we just call them 'reducts'.
- ▶ If P is a finite subset of M, then (M, P) has no proper non-trivial reducts (and intransitive maximal-closed subgroups of Sym(M) all arise like this).
- ► If E is a proper non-trivial equivalence relation on M with all classes of the same size then (M, E) has no proper non-trivial reducts (and transitive imprimitive maximal closed groups all arise like this.)

Remarks.

- If *M* is ω-categorical, then the two notions of reduct coincide (Ryll-Nardzewski), and we just call them 'reducts'.
- ▶ If P is a finite subset of M, then (M, P) has no proper non-trivial reducts (and intransitive maximal-closed subgroups of Sym(M) all arise like this).
- ► If E is a proper non-trivial equivalence relation on M with all classes of the same size then (M, E) has no proper non-trivial reducts (and transitive imprimitive maximal closed groups all arise like this.)
- If G < Sym(N) is maximal-closed and has more than one orbit on the collection of k-element sets, then G = Aut(Γ) for some k-uniform hypergraph Γ with vertex set N.

Remarks.

- If *M* is ω-categorical, then the two notions of reduct coincide (Ryll-Nardzewski), and we just call them 'reducts'.
- ▶ If P is a finite subset of M, then (M, P) has no proper non-trivial reducts (and intransitive maximal-closed subgroups of Sym(M) all arise like this).
- ▶ If E is a proper non-trivial equivalence relation on M with all classes of the same size then (M, E) has no proper non-trivial reducts (and transitive imprimitive maximal closed groups all arise like this.)
- If G < Sym(N) is maximal-closed and has more than one orbit on the collection of k-element sets, then G = Aut(Γ) for some k-uniform hypergraph Γ with vertex set N.

So we are interested in maximal-closed subgroups of $Sym(\mathbb{N})$ which act primitively on \mathbb{N} .

Theorem (Cameron, 1976)

The only proper non-trivial reducts of $(\mathbb{Q},<)$ are

- (\mathbb{Q}, B) (ternary betweenness, 'x is between y and z')
- (\mathbb{Q}, K) (ternary circular order K induced from <)
- ▶ (Q, S) (quaternary separation relation, or K considered up to reversal).

Theorem (Cameron, 1976)

The only proper non-trivial reducts of $(\mathbb{Q},<)$ are

- (\mathbb{Q}, B) (ternary betweenness, 'x is between y and z')
- (\mathbb{Q}, K) (ternary circular order K induced from <)
- ▶ (Q, S) (quaternary separation relation, or K considered up to reversal).

BUT (Junker, Ziegler, 2008) (\mathbb{Q} , < 0) has 116 reducts!

Theorem (Thomas, 1991)

(i) The only proper non-trivial reducts of the random graph (Γ, R) are

- (Γ, B) (B ternary, the random graph up to anti-isomorphism)
- (\mathbb{Q}, K) (K ternary, the homogeneous 'two-graph' induced from R, a triple satisfying K iff its entries are distinct and it contains an odd number of graph edges)
- ► (Q, S) (the above homogeneous two-graph up to anti-isomorphism)

(ii) For $n \ge 3$, the generic K_n -free graph has no proper non-trivial reducts.

Bennett (PhD, Rutgers, 1997): Result for random tournament like that for random graph (3 proper non-trivial reducts).

- (Pach, Pinsker, Pluhár, Pongrácz, Szabó) Similar result for generic poset (3 reducts).
- Thomas (1996): Classification of reducts of random hypergraphs.

Key tool (in treatments of such results by Bodirsky, Pinsker, Tsankov, motivated by constraint satisfaction problems (CSPs)):

Definition

Let C be a class of finite relational structures with a language including < (interpreted by a total order). Then C has the **Ramsey Property** if for every $A, B \in C$ and positive integer k, there is $D \in C$ such that for every colouring with k colours of the copies of A in D, there is a copy of B in D all of whose substructures isomorphic to A have the same colour. In Ramsey notation,

 $D \to (B)^k_A$

For all the above structures \mathcal{M} (random graph, random hypergraph, etc.) there is a Fraïssé-homogeneous expansion $\mathcal{M}' = (\mathcal{M}, <)$ by a total order such that the $\operatorname{Age}(\mathcal{M}')$ (the class of finite structures which embed in \mathcal{M}') is a Ramsey class.

For all the above structures \mathcal{M} (random graph, random hypergraph, etc.) there is a Fraïssé-homogeneous expansion $\mathcal{M}' = (\mathcal{M}, <)$ by a total order such that the $\operatorname{Age}(\mathcal{M}')$ (the class of finite structures which embed in \mathcal{M}') is a Ramsey class.

Remark. By Kechris-Pestov-Todorcevic, if C is as above and \mathcal{M} is the Fraïssé limit, then $\operatorname{Aut}(\mathcal{M})$ is **extremely amenable**: every continuous action of $\operatorname{Aut}(\mathcal{M})$ on a compact Hausdorff space has a fixed point.

(日) (同) (三) (三) (三) (○) (○)

Strictly minimal sets (Cherlin-Harrington-Lachlan + Zilber)

Strictly minimal sets (Cherlin-Harrington-Lachlan + Zilber)

Smoothly approximable rank 1 Lie geometries.

- Strictly minimal sets (Cherlin-Harrington-Lachlan + Zilber)
- Smoothly approximable rank 1 Lie geometries.
- Cases where permutation group theory (e.g. Jordan groups see later) is applicable.

- Strictly minimal sets (Cherlin-Harrington-Lachlan + Zilber)
- Smoothly approximable rank 1 Lie geometries.
- Cases where permutation group theory (e.g. Jordan groups see later) is applicable.

Conjecture of Thomas (1991): If \mathcal{M} is a Fraïssé-homogeneous structure over a finite relational language, then \mathcal{M} has just finitely many reducts.

An example.

Let (T, R) be the unique degree 3 graph-theoretic tree. Two rays (infinite one-way paths) are equivalent if they have infinitely many common vertices. The equivalence classes are called *ends*. Let M^+ be the set of ends of (T, R).

An example.

Let (T, R) be the unique degree 3 graph-theoretic tree. Two rays (infinite one-way paths) are equivalent if they have infinitely many common vertices. The equivalence classes are called *ends*. Let M^+ be the set of ends of (T, R).

Define D(x, y; z, w) to hold on M^+ iff one of

$$\blacktriangleright \ x = y \land x \neq z \land x \neq w$$

$$\blacktriangleright \ z = w \land x \neq z \land y \neq z$$

x, y, z, w are distinct, and there are rays x̂ ∈ x, ŷ ∈ y etc.
 such that x̂ ∪ ŷ and ẑ ∪ ŵ are disjoint two-way infinite paths.

An example.

Let (T, R) be the unique degree 3 graph-theoretic tree. Two rays (infinite one-way paths) are equivalent if they have infinitely many common vertices. The equivalence classes are called *ends*. Let M^+ be the set of ends of (T, R).

Define D(x, y; z, w) to hold on M^+ iff one of

$$\blacktriangleright \ x = y \land x \neq z \land x \neq w$$

$$\blacktriangleright \ z = w \land x \neq z \land y \neq z$$

x, y, z, w are distinct, and there are rays x̂ ∈ x, ŷ ∈ y etc.
 such that x̂ ∪ ŷ and ẑ ∪ ŵ are disjoint two-way infinite paths.

Let M be a countable dense subset of M^+ (i.e. for each $a \in T$ there are $x, y, z \in M$ and rays $\hat{x} \in x$, $\hat{y} \in y$ and $\hat{z} \in z$ such that $\hat{x} \cup \hat{y}$, $\hat{y} \cup \hat{z}$, and $\hat{x} \cup \hat{z}$ are all two-way infinite paths through a). Put $\mathcal{M} := (M, D)$.

► The above determines (M, D) uniquely up to isomorphism (back-and-forth).

► The above determines (M, D) uniquely up to isomorphism (back-and-forth).

► The tree (T, R) is interpretable in (M, D): vertices are equivalence classes of triples.

► The above determines (M, D) uniquely up to isomorphism (back-and-forth).

- ► The tree (T, R) is interpretable in (M, D): vertices are equivalence classes of triples.
- Hence, (M, D) is not ω -categorical.

► The above determines (M, D) uniquely up to isomorphism (back-and-forth).

- ► The tree (T, R) is interpretable in (M, D): vertices are equivalence classes of triples.
- Hence, (M, D) is not ω -categorical.
- Aut(M, D) is 3-transitive.

- ► The above determines (M, D) uniquely up to isomorphism (back-and-forth).
- ► The tree (T, R) is interpretable in (M, D): vertices are equivalence classes of triples.
- Hence, (M, D) is not ω -categorical.
- Aut(M, D) is 3-transitive.
- $\blacktriangleright~(M,D)$ has the strict order property and is NIP. Indeed

- ► The above determines (M, D) uniquely up to isomorphism (back-and-forth).
- ► The tree (T, R) is interpretable in (M, D): vertices are equivalence classes of triples.
- Hence, (M, D) is not ω -categorical.
- ▶ Aut(M, D) is 3-transitive.
- (M, D) has the strict order property and is NIP. Indeed
- ▶ Let *K* be a countable model of $Th(\mathbb{Q}_2)$ with valuation ring \mathcal{O} having maximal ideal \mathcal{M} . On $\mathrm{PG}_1(K)$ (viewed as $K \cup \{\infty\}$), define D(x, y; z, w) to hold if and only if the cross-ratio $\frac{(x-z)(y-w)}{(x-w)(y-z)} \in 1 + \mathcal{M}$. Then

 $(\mathrm{PG}_1(K), D) \cong (M, D).$

- ► The above determines (M, D) uniquely up to isomorphism (back-and-forth).
- ► The tree (T, R) is interpretable in (M, D): vertices are equivalence classes of triples.
- Hence, (M, D) is not ω -categorical.
- Aut(M, D) is 3-transitive.
- $\blacktriangleright~(M,D)$ has the strict order property and is NIP. Indeed
- ▶ Let *K* be a countable model of $Th(\mathbb{Q}_2)$ with valuation ring \mathcal{O} having maximal ideal \mathcal{M} . On $\mathrm{PG}_1(K)$ (viewed as $K \cup \{\infty\}$), define D(x, y; z, w) to hold if and only if the cross-ratio $\frac{(x-z)(y-w)}{(x-w)(y-z)} \in 1 + \mathcal{M}$. Then

$$(\mathrm{PG}_1(K), D) \cong (M, D).$$

'D-relations' were axiomatised by Adeleke and Neumann.

Theorem (Bodirsky, M (2013))

The structure (M, D) has no proper non-trivial definable reducts or group-reducts.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Bodirsky, M (2013))

The structure (M, D) has no proper non-trivial definable reducts or group-reducts.

Remark. This says in particular that Aut(M, D) is a maximal-closed subgroup of Sym(M) which is not oligomorphic. (A permutation group G on countably infinite M is oligomorphic if G has finitely many orbits on M^n for all n.)

Theorem (Bodirsky, M (2013))

The structure (M, D) has no proper non-trivial definable reducts or group-reducts.

Remark. This says in particular that Aut(M, D) is a maximal-closed subgroup of Sym(M) which is not oligomorphic. (A permutation group G on countably infinite M is oligomorphic if G has finitely many orbits on M^n for all n.)

Problem: Find other kinds of non- ω -categorical structures with no proper non-trivial reducts of either kind.

Theorem (Bodirsky, M (2013))

The structure (M, D) has no proper non-trivial definable reducts or group-reducts.

Remark. This says in particular that Aut(M, D) is a maximal-closed subgroup of Sym(M) which is not oligomorphic. (A permutation group G on countably infinite M is oligomorphic if G has finitely many orbits on M^n for all n.)

Problem: Find other kinds of non- ω -categorical structures with no proper non-trivial reducts of either kind.

Guess: The above example (M, D) still works, starting from a higher degree tree.

▶ for each a ∈ T there are three E_a-classes, with Aut(M)_a inducing S₃ on them;

- ▶ for each $a \in T$ there are three E_a -classes, with $Aut(\mathcal{M})_a$ inducing S_3 on them;
- the union of two cones at a is a cone (at a neighbour of a); so

- ▶ for each $a \in T$ there are three E_a -classes, with $Aut(\mathcal{M})_a$ inducing S_3 on them;
- the union of two cones at a is a cone (at a neighbour of a); so

the complement of a cone is a cone;

- ▶ for each a ∈ T there are three E_a-classes, with Aut(M)_a inducing S₃ on them;
- the union of two cones at a is a cone (at a neighbour of a); so
- the complement of a cone is a cone;
- ▶ if U is a cone, then Aut(U, D) is transitive, and any automorphism of (U, D) can be extended by id_{M\U} to an aut. of (M, D).

- ▶ for each a ∈ T there are three E_a-classes, with Aut(M)_a inducing S₃ on them;
- the union of two cones at a is a cone (at a neighbour of a); so
- the complement of a cone is a cone;
- ▶ if U is a cone, then Aut(U, D) is transitive, and any automorphism of (U, D) can be extended by id_{M\U} to an aut. of (M, D).
- If A ⊂ M is finite, then Aut(M)_(A) (the pointwise stabiliser of A) has no finite orbits on M \ A; hence acl(A) = A.

Definition

Let (G, X) be a permutation group (group G acting faithfully on X).

- If $A \subset X$ with |A| > 1, then A is a Jordan set if $G_{(X \setminus A)}$ is transitive on A. It is proper if $A \neq X$, and if $|X \setminus A| = n \in \mathbb{N}$, then (G, X) is not (n + 1)-transitive.
- A Jordan group is a transitive permutation group with a proper Jordan set.

Theorem

Let G be a 3-transitive but not highly transitive Jordan permutation group on an infinite set X. Then G preserves on X one of

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

► a 4-ary separation relation (from a total order on X)

Theorem

Let G be a 3-transitive but not highly transitive Jordan permutation group on an infinite set X. Then G preserves on X one of

- ► a 4-ary separation relation (from a total order on X)
- ▶ a *D*-relation on *X* (in which every cone is a Jordan set)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

Let G be a 3-transitive but not highly transitive Jordan permutation group on an infinite set X. Then G preserves on X one of

- ► a 4-ary separation relation (from a total order on X)
- ▶ a *D*-relation on *X* (in which every cone is a Jordan set)

• a Steiner k-system on X (some k > 1)

Theorem

Let G be a 3-transitive but not highly transitive Jordan permutation group on an infinite set X. Then G preserves on X one of

- ▶ a 4-ary separation relation (from a total order on X)
- ▶ a *D*-relation on *X* (in which every cone is a Jordan set)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- a Steiner k-system on X (some k > 1)
- ► a 'limit' of Steiner systems on X.

Theorem

Let G be a 3-transitive but not highly transitive Jordan permutation group on an infinite set X. Then G preserves on X one of

- ▶ a 4-ary separation relation (from a total order on X)
- ▶ a *D*-relation on *X* (in which every cone is a Jordan set)
- a Steiner k-system on X (some k > 1)
- ► a 'limit' of Steiner systems on X.

Steiner k-system on X: collection of 'blocks' (subsets of X all of the same size > k) such that any k elements of X lie on a unique block.

Any cone of (M, D) is a Jordan set for $G := \operatorname{Aut}(M, D)$. Let \mathcal{M}' be a non-trivial group-reduct of (M, D). Then $\operatorname{Aut}(M, D) \leq \operatorname{Aut}(\mathcal{M}') < \operatorname{Sym}(M)$.

Any cone of (M, D) is a Jordan set for $G := \operatorname{Aut}(M, D)$. Let \mathcal{M}' be a non-trivial group-reduct of (M, D). Then $\operatorname{Aut}(M, D) \leq \operatorname{Aut}(\mathcal{M}') < \operatorname{Sym}(M)$.

Also, $H:=\operatorname{Aut}(M')$ is a 3-transitive but not highly transitive Jordan group.

Any cone of (M, D) is a Jordan set for $G := \operatorname{Aut}(M, D)$. Let \mathcal{M}' be a non-trivial group-reduct of (M, D). Then $\operatorname{Aut}(M, D) \leq \operatorname{Aut}(\mathcal{M}') < \operatorname{Sym}(M)$.

Also, $H:=\operatorname{Aut}(M')$ is a 3-transitive but not highly transitive Jordan group.

Apply above classification. Rule out all but the D-relation case, and show that if H preserves a D-relation D' on M then it has the same cones as (M, D), so D' = D.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $b_k \in M$ not lie on l, and let m be the block through $a_1, \ldots, a_{k-1}, b_k$. Choose $a_{k+1} \notin \{a_1, \ldots, a_k\}$ on l and $b_{k+1} \notin \{a_1, \ldots, a_{k-1}, b_k\}$ on m.

Let $b_k \in M$ not lie on l, and let m be the block through $a_1, \ldots, a_{k-1}, b_k$. Choose $a_{k+1} \notin \{a_1, \ldots, a_k\}$ on l and $b_{k+1} \notin \{a_1, \ldots, a_{k-1}, b_k\}$ on m.

Now l is the unique block containing $a_1, \ldots, a_{k-2}, a_k, a_{k+1}$, and m the unique block containing $a_1, \ldots, a_{k-2}, b_k, b_{k+1}$, and these blocks have common points a_1, \ldots, a_{k-1} .

Let $b_k \in M$ not lie on l, and let m be the block through $a_1, \ldots, a_{k-1}, b_k$. Choose $a_{k+1} \notin \{a_1, \ldots, a_k\}$ on l and $b_{k+1} \notin \{a_1, \ldots, a_{k-1}, b_k\}$ on m.

Now l is the unique block containing $a_1, \ldots, a_{k-2}, a_k, a_{k+1}$, and m the unique block containing $a_1, \ldots, a_{k-2}, b_k, b_{k+1}$, and these blocks have common points a_1, \ldots, a_{k-1} .

Put $A := \{a_1, \ldots, a_{k-2}, a_k, a_{k+1}, b_k, b_{k+1}\}$. Then a_{k-1} lies in a singleton orbit of $H_{(A)}$. This is impossible as $a_{k-1} \notin A$ and $H \ge G$.

To show (M, D) has no proper non-trivial definable reducts. Let \mathcal{M}' be a non-trivial definable reduct of (M, D).

Claim: It suffices to show that the set of cones of (M, D) is uniformly definable in (M, D), i.e. there are formulas $\phi(x, y_1, \ldots, y_k)$ and $\psi(y_1, \ldots, y_k)$ over \emptyset (in the language of \mathcal{M}') such that the set of cones of (M, D) is exactly

$$\{\phi(M',\bar{a}): \bar{a} \in M^k, \mathcal{M}' \models \psi(\bar{a})\}.$$

Proof: Easy to check that the cones determine D.

Step 1. Show that some cone of (M, D) is definable in \mathcal{M}' , by some formula $\phi(x, \bar{a})$. Hence, all cones are \mathcal{M}' -definable via ϕ (as $\operatorname{Aut}(\mathcal{M}') \geq \operatorname{Aut}(M, D)$, which is transitive on the set of cones). Now aim to modify ϕ , and find ψ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Step 1. Show that some cone of (M, D) is definable in \mathcal{M}' , by some formula $\phi(x, \bar{a})$. Hence, all cones are \mathcal{M}' -definable via ϕ (as $\operatorname{Aut}(\mathcal{M}') \geq \operatorname{Aut}(M, D)$, which is transitive on the set of cones). Now aim to modify ϕ , and find ψ .

Step 2. Arrange that no element of \bar{a} lies in $\phi(M, \bar{a})$, and let $\psi_1(\bar{a})$ express this.

Step 1. Show that some cone of (M, D) is definable in \mathcal{M}' , by some formula $\phi(x, \bar{a})$. Hence, all cones are \mathcal{M}' -definable via ϕ (as $\operatorname{Aut}(\mathcal{M}') \ge \operatorname{Aut}(M, D)$, which is transitive on the set of cones). Now aim to modify ϕ , and find ψ .

Step 2. Arrange that no element of \bar{a} lies in $\phi(M, \bar{a})$, and let $\psi_1(\bar{a})$ express this.

Step 3. Let $\psi_2(\bar{y})$ express also that the complement of the set $\phi(M, \bar{y})$ has the form $\phi(M, \bar{y'})$ for some $\bar{y'}$. (Recall that the complement of a cone in (M, D) is also a cone.)

Step 1. Show that some cone of (M, D) is definable in \mathcal{M}' , by some formula $\phi(x, \bar{a})$. Hence, all cones are \mathcal{M}' -definable via ϕ (as $\operatorname{Aut}(\mathcal{M}') \ge \operatorname{Aut}(M, D)$, which is transitive on the set of cones). Now aim to modify ϕ , and find ψ .

Step 2. Arrange that no element of \bar{a} lies in $\phi(M, \bar{a})$, and let $\psi_1(\bar{a})$ express this.

Step 3. Let $\psi_2(\bar{y})$ express also that the complement of the set $\phi(M, \bar{y})$ has the form $\phi(M, \bar{y'})$ for some $\bar{y'}$. (Recall that the complement of a cone in (M, D) is also a cone.) **Step 4.** Let $\psi_3(\bar{y})$ express a consequence of the Jordan property of cones. Namely,

$$\forall \bar{y}'(\bigwedge_{i=1}^n \neg \phi(y'_i, \bar{y}) \to ((\phi(M, \bar{y}') \supseteq \phi(M, \bar{y})) \lor \phi(M, \bar{y}') \cap \phi(M, \bar{y}) = \emptyset))).$$

Step 1. Show that some cone of (M, D) is definable in \mathcal{M}' , by some formula $\phi(x, \bar{a})$. Hence, all cones are \mathcal{M}' -definable via ϕ (as $\operatorname{Aut}(\mathcal{M}') \ge \operatorname{Aut}(M, D)$, which is transitive on the set of cones). Now aim to modify ϕ , and find ψ .

Step 2. Arrange that no element of \bar{a} lies in $\phi(M, \bar{a})$, and let $\psi_1(\bar{a})$ express this.

Step 3. Let $\psi_2(\bar{y})$ express also that the complement of the set $\phi(M, \bar{y})$ has the form $\phi(M, \bar{y'})$ for some $\bar{y'}$. (Recall that the complement of a cone in (M, D) is also a cone.) **Step 4.** Let $\psi_3(\bar{y})$ express a consequence of the Jordan property of cones. Namely,

$$\forall \bar{y}'(\bigwedge_{i=1}^n \neg \phi(y'_i, \bar{y}) \to ((\phi(M, \bar{y}') \supseteq \phi(M, \bar{y})) \lor \phi(M, \bar{y}') \cap \phi(M, \bar{y}) = \emptyset))).$$

Step 5. Reduce to $l(\bar{y}) = 4$. Reduce to case when $\phi(M, \bar{a}')$ is a cone or union of two cones at adjacent nodes. Finish.

Partially order definable reducts of \mathcal{M} , putting $\mathcal{M}_1 \leq \mathcal{M}_2$ iff \mathcal{M}_2 is \emptyset -definable in \mathcal{M}_1 (factoring out equi-definability). Partially order group-reducts by group inclusion.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Partially order definable reducts of \mathcal{M} , putting $\mathcal{M}_1 \leq \mathcal{M}_2$ iff \mathcal{M}_2 is \emptyset -definable in \mathcal{M}_1 (factoring out equi-definability). Partially order group-reducts by group inclusion.

Lemma

Let \mathcal{M} be saturated.

(i) The partial order of definable reducts of M embeds into the partial order of group-reducts of M.
(ii) If Aut(M) is maximal-closed, then M has no proper

non-trivial definable reducts.

Partially order definable reducts of \mathcal{M} , putting $\mathcal{M}_1 \leq \mathcal{M}_2$ iff \mathcal{M}_2 is \emptyset -definable in \mathcal{M}_1 (factoring out equi-definability). Partially order group-reducts by group inclusion.

Lemma

Let \mathcal{M} be saturated.

(i) The partial order of definable reducts of \mathcal{M} embeds into the partial order of group-reducts of \mathcal{M} . (ii) If $\operatorname{Aut}(\mathcal{M})$ is maximal-closed, then \mathcal{M} has no proper

(ii) If $Aut(\mathcal{M})$ is maximal-closed, then \mathcal{M} has no proper non-trivial definable reducts.

Proof. Easy compactness and saturation argument.

Reducts of strongly minimal sets

Problem. Find strongly minimal sets (not ω -categorical) with no proper non-trivial reducts of either kind.

Reducts of strongly minimal sets

Problem. Find strongly minimal sets (not ω -categorical) with no proper non-trivial reducts of either kind.

Strong minimality is preserved by reducts, so structural results for strongly minimal sets are relevant.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem. Find strongly minimal sets (not ω -categorical) with no proper non-trivial reducts of either kind.

Strong minimality is preserved by reducts, so structural results for strongly minimal sets are relevant.

First try. Let (T, R) be the degree 3 tree (strongly minimal, disintegrated, i.e. $\operatorname{acl}(A) = \bigcup(\operatorname{acl}(a) : a \in A)$ for any A). The 'distance 2' graph $T^{(2)}$ is a proper non-trivial definable and group reduct. $T^{(2)}$ is the disjoint union of two graphs, each built from copies of K_3 in a treelike way, three copies of K_3 containing each vertex. There is also a (non-definable) group-reduct, the equivalence relation with 2 classes corresponding to 'even distance apart'. Any other reducts?

Second try. Let $k, l \in \mathbb{N}$ with $k \ge 2$ and $l \ge 3$. Let $\Gamma_{k,l}$ be the graph consisting of copies of K_{k+1} put together in a treelike way, with l copies of K_{k+1} containing each vertex.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Second try. Let $k, l \in \mathbb{N}$ with $k \ge 2$ and $l \ge 3$. Let $\Gamma_{k,l}$ be the graph consisting of copies of K_{k+1} put together in a treelike way, with l copies of K_{k+1} containing each vertex.

The graph $\Gamma_{k,l}$ is vertex transitive of finite degree kl, so strongly minimal disintegrated. In fact these are essentially the finite degree **distance transitive** graphs (the aut. group is transitive on the pairs of vertices at any given distance).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Second try. Let $k, l \in \mathbb{N}$ with $k \ge 2$ and $l \ge 3$. Let $\Gamma_{k,l}$ be the graph consisting of copies of K_{k+1} put together in a treelike way, with l copies of K_{k+1} containing each vertex.

The graph $\Gamma_{k,l}$ is vertex transitive of finite degree kl, so strongly minimal disintegrated. In fact these are essentially the finite degree **distance transitive** graphs (the aut. group is transitive on the pairs of vertices at any given distance).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question. Does $\Gamma_{k,l}$ have proper non-trivial group-reducts?

Second try. Let $k, l \in \mathbb{N}$ with $k \ge 2$ and $l \ge 3$. Let $\Gamma_{k,l}$ be the graph consisting of copies of K_{k+1} put together in a treelike way, with l copies of K_{k+1} containing each vertex.

The graph $\Gamma_{k,l}$ is vertex transitive of finite degree kl, so strongly minimal disintegrated. In fact these are essentially the finite degree **distance transitive** graphs (the aut. group is transitive on the pairs of vertices at any given distance).

Question. Does $\Gamma_{k,l}$ have proper non-trivial group-reducts?

Theorem (Bodirsky, M)

 $\mathcal{M} := \Gamma_{k,l}$ has no proper non-trivial definable reducts.

Sketch Proof.

1. Any definable reduct \mathcal{M}' is strongly minimal and disintegrated, so if \mathcal{M}' is non-trivial then $|\operatorname{acl}_{\mathcal{M}'}(a)| > 1$ for any a. Hence in \mathcal{M}' , some set $\phi(M, a)$ has finite size greater than 1. By distance transitivity, can assume there are $1 \le n_1 < \ldots < n_t \in \mathbb{N}$ such that $\phi(x, y)$ is ' $d(x, y) \in \{n_1, \ldots, n_t\}$ '.

Sketch Proof.

1. Any definable reduct \mathcal{M}' is strongly minimal and disintegrated, so if \mathcal{M}' is non-trivial then $|\operatorname{acl}_{\mathcal{M}'}(a)| > 1$ for any a. Hence in \mathcal{M}' , some set $\phi(M, a)$ has finite size greater than 1. By distance transitivity, can assume there are $1 \le n_1 < \ldots < n_t \in \mathbb{N}$ such that $\phi(x, y)$ is ' $d(x, y) \in \{n_1, \ldots, n_t\}$ '.

2. Put $n := n_t$. Show that for any vertices x, y,

$$d(x,y) \le 2n \Leftrightarrow \mathcal{M}' \models \exists z (\phi(x,z) \land \phi(y,z)).$$

Thus the balls $B_{2n}(x)$ are uniformly definable.

Sketch Proof.

1. Any definable reduct \mathcal{M}' is strongly minimal and disintegrated, so if \mathcal{M}' is non-trivial then $|\operatorname{acl}_{\mathcal{M}'}(a)| > 1$ for any a. Hence in \mathcal{M}' , some set $\phi(M, a)$ has finite size greater than 1. By distance transitivity, can assume there are $1 \le n_1 < \ldots < n_t \in \mathbb{N}$ such that $\phi(x, y)$ is ' $d(x, y) \in \{n_1, \ldots, n_t\}$ '.

2. Put $n := n_t$. Show that for any vertices x, y,

$$d(x,y) \le 2n \Leftrightarrow \mathcal{M}' \models \exists z (\phi(x,z) \land \phi(y,z)).$$

Thus the balls $B_{2n}(x)$ are uniformly definable.

3. Show there is some $\gamma \in \mathbb{N}$ such that

x, y are adjacent in $\mathcal{M} \Leftrightarrow B_{2n}(x) \cap B_{2n}(y) < \gamma$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Non-disintegrated locally modular strongly minimal sets. For finite fields F, vector spaces over F (and projective and affine spaces over F) are ω -categorical, and reducts can be handled by the Cherlin-Harrington-Lachlan and Zilber work.

Non-disintegrated locally modular strongly minimal sets. For finite fields F, vector spaces over F (and projective and affine spaces over F) are ω -categorical, and reducts can be handled by the Cherlin-Harrington-Lachlan and Zilber work.

If V is a vector space over an infinite characteristic 0 field F, there is a reduct (definable and group) (V,R), where

$$R(x,y) \Leftrightarrow (2x = y \lor 2y = x).$$

Non-disintegrated locally modular strongly minimal sets. For finite fields F, vector spaces over F (and projective and affine spaces over F) are ω -categorical, and reducts can be handled by the Cherlin-Harrington-Lachlan and Zilber work.

If V is a vector space over an infinite characteristic 0 field F, there is a reduct (definable and group) (V,R), where

$$R(x,y) \Leftrightarrow (2x = y \lor 2y = x).$$

If F has characteristic p, there are proper reducts by viewing V as over the prime subfield.

1. Define f on \mathbb{Q} by f(x, y, z) := x - y + z. Does (\mathbb{Q}, f) have any proper non-trivial definable reducts?

1. Define f on \mathbb{Q} by f(x, y, z) := x - y + z. Does (\mathbb{Q}, f) have any proper non-trivial definable reducts?

Note: For each prime p, let v_p be the p-adic valuation on \mathbb{Q} and define $C_p(x, y, z)$ to hold iff $v_p(x - y) \leq v_p(y - z)$. The structures (\mathbb{Q}, C_p) are distinct group-reducts.

1. Define f on \mathbb{Q} by f(x, y, z) := x - y + z. Does (\mathbb{Q}, f) have any proper non-trivial definable reducts?

Note: For each prime p, let v_p be the p-adic valuation on \mathbb{Q} and define $C_p(x, y, z)$ to hold iff $v_p(x - y) \leq v_p(y - z)$. The structures (\mathbb{Q}, C_p) are distinct group-reducts.

2. For $2 \leq d \leq \aleph_0$, are the groups $\operatorname{AGL}_d(\mathbb{Q})$ and $\operatorname{PGL}_{d+1}(\mathbb{Q})$ maximal-closed, in their natural actions? Do the corresponding strongly minimal structures have proper non-trivial definable reducts? (They will be locally modular but not disintegrated.)

1. Define f on \mathbb{Q} by f(x, y, z) := x - y + z. Does (\mathbb{Q}, f) have any proper non-trivial definable reducts?

Note: For each prime p, let v_p be the p-adic valuation on \mathbb{Q} and define $C_p(x, y, z)$ to hold iff $v_p(x - y) \leq v_p(y - z)$. The structures (\mathbb{Q}, C_p) are distinct group-reducts.

2. For $2 \le d \le \aleph_0$, are the groups $\operatorname{AGL}_d(\mathbb{Q})$ and $\operatorname{PGL}_{d+1}(\mathbb{Q})$ maximal-closed, in their natural actions? Do the corresponding strongly minimal structures have proper non-trivial definable reducts? (They will be locally modular but not disintegrated.)

3. Does $\operatorname{Sym}(\mathbb{N})$ have any countable maximal-closed subgroups?

1. Define f on \mathbb{Q} by f(x, y, z) := x - y + z. Does (\mathbb{Q}, f) have any proper non-trivial definable reducts?

Note: For each prime p, let v_p be the p-adic valuation on \mathbb{Q} and define $C_p(x, y, z)$ to hold iff $v_p(x - y) \leq v_p(y - z)$. The structures (\mathbb{Q}, C_p) are distinct group-reducts.

2. For $2 \le d \le \aleph_0$, are the groups $\operatorname{AGL}_d(\mathbb{Q})$ and $\operatorname{PGL}_{d+1}(\mathbb{Q})$ maximal-closed, in their natural actions? Do the corresponding strongly minimal structures have proper non-trivial definable reducts? (They will be locally modular but not disintegrated.)

3. Does $\operatorname{Sym}(\mathbb{N})$ have any countable maximal-closed subgroups?

4. Is every closed proper subgroup of $Sym(\mathbb{N})$ contained in a maximal-closed subgroup of $Sym(\mathbb{N})$?