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The setting.

Let M be a countably infinite first order structure. A definable
reduct is a structure M′ with the same domain as M, whose
relations are definable without parameters in M.

It is an improper reduct if also M is a reduct of M′ (so M and
M′ have the same 0-definable relations), and is trivial if M′ is a
reduct of a pure set, so has automorphism group Sym(M).

If M′ and M have the same domain, M′ is a group-reduct if
Aut(M′) ≥ Aut(M), is proper if Aut(M′) > Aut(M), trivial if
Aut(M) = Sym(M).

Basic Problem: Find examples of structures with few/no proper
non-trivial reducts (in either or both senses).
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Overview of Talk

I Reducts of ω-categorical structures.

I Non-ω-categorical example with no proper non-trivial reducts
(both senses).

I Other possible examples (e.g. for strongly minimal sets).

The first is work of Cameron, Thomas, and other authors. The last
two are joint work with Manuel Bodirsky.

Group-theoretic interpretation: M has no proper non-trivial
group-reducts if and only if Aut(M) is maximal-closed in
Sym(M).

Remark. There are many (abstractly) maximal subgroups of

Sym(N), e.g. stabilisers of ultrafilters on N (so 22
ℵ0 up to

conjugacy).
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Recall: A permutation group (G,X) is primitive if there is no
proper non-trivial G-invariant equivalence relation on X.

Remarks.

I If M is ω-categorical, then the two notions of reduct coincide
(Ryll-Nardzewski), and we just call them ‘reducts’.

I If P is a finite subset of M , then (M,P ) has no proper
non-trivial reducts (and intransitive maximal-closed subgroups
of Sym(M) all arise like this).

I If E is a proper non-trivial equivalence relation on M with all
classes of the same size then (M,E) has no proper non-trivial
reducts (and transitive imprimitive maximal closed groups all
arise like this.)

I If G < Sym(N) is maximal-closed and has more than one
orbit on the collection of k-element sets, then G = Aut(Γ) for
some k-uniform hypergraph Γ with vertex set N.

So we are interested in maximal-closed subgroups of Sym(N)
which act primitively on N.
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Omega-categoricity

Theorem (Cameron, 1976)

The only proper non-trivial reducts of (Q, <) are

I (Q, B) (ternary betweenness, ‘x is between y and z’)

I (Q,K) (ternary circular order K induced from <)

I (Q, S) (quaternary separation relation, or K considered up to
reversal).

BUT (Junker, Ziegler, 2008) (Q, < 0) has 116 reducts!
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Omega-categoricity – homogeneous graphs

Theorem (Thomas, 1991)

(i) The only proper non-trivial reducts of the random graph (Γ, R)
are

I (Γ, B) (B ternary, the random graph up to anti-isomorphism)

I (Q,K) (K ternary, the homogeneous ‘two-graph’ induced
from R, a triple satisfying K iff its entries are distinct and it
contains an odd number of graph edges)

I (Q, S) (the above homogeneous two-graph up to
anti-isomorphism)

(ii) For n ≥ 3, the generic Kn-free graph has no proper non-trivial
reducts.



I Bennett (PhD, Rutgers, 1997): Result for random tournament
like that for random graph (3 proper non-trivial reducts).

I (Pach, Pinsker, Pluhár, Pongrácz, Szabó) Similar result for
generic poset (3 reducts).

I Thomas (1996): Classification of reducts of random
hypergraphs.



Key tool (in treatments of such results by Bodirsky, Pinsker,
Tsankov, motivated by constraint satisfaction problems (CSPs)):

Definition
Let C be a class of finite relational structures with a language
including < (interpreted by a total order). Then C has the Ramsey
Property if for every A,B ∈ C and positive integer k, there is
D ∈ C such that for every colouring with k colours of the copies of
A in D, there is a copy of B in D all of whose substructures
isomorphic to A have the same colour. In Ramsey notation,

D → (B)kA



For all the above structures M (random graph, random
hypergraph, etc.) there is a Fräıssé-homogeneous expansion
M′ = (M, <) by a total order such that the Age(M′) (the class
of finite structures which embed in M′) is a Ramsey class.

Remark. By Kechris-Pestov-Todorcevic, if C is as above and M is
the Fräıssé limit, then Aut(M) is extremely amenable: every
continuous action of Aut(M) on a compact Hausdorff space has a
fixed point.
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the Fräıssé limit, then Aut(M) is extremely amenable: every
continuous action of Aut(M) on a compact Hausdorff space has a
fixed point.



Other ω-categorical structures where reducts are describable:

I Strictly minimal sets (Cherlin-Harrington-Lachlan + Zilber)

I Smoothly approximable rank 1 Lie geometries.

I Cases where permutation group theory (e.g. Jordan groups –
see later) is applicable.

Conjecture of Thomas (1991): If M is a Fräıssé-homogeneous
structure over a finite relational language, then M has just finitely
many reducts.
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Reducts of non-ω-categorical structures.

An example.
Let (T,R) be the unique degree 3 graph-theoretic tree. Two rays
(infinite one-way paths) are equivalent if they have infinitely many
common vertices. The equivalence classes are called ends. Let M+

be the set of ends of (T,R).

Define D(x, y; z, w) to hold on M+ iff one of

I x = y ∧ x 6= z ∧ x 6= w

I z = w ∧ x 6= z ∧ y 6= z

I x, y, z, w are distinct, and there are rays x̂ ∈ x, ŷ ∈ y etc.
such that x̂ ∪ ŷ and ẑ ∪ ŵ are disjoint two-way infinite paths.

Let M be a countable dense subset of M+ (i.e. for each a ∈ T
there are x, y, z ∈M and rays x̂ ∈ x, ŷ ∈ y and ẑ ∈ z such that
x̂ ∪ ŷ, ŷ ∪ ẑ, and x̂ ∪ ẑ are all two-way infinite paths through a).
Put M := (M,D).
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such that x̂ ∪ ŷ and ẑ ∪ ŵ are disjoint two-way infinite paths.

Let M be a countable dense subset of M+ (i.e. for each a ∈ T
there are x, y, z ∈M and rays x̂ ∈ x, ŷ ∈ y and ẑ ∈ z such that
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Observations on (M,D).

I The above determines (M,D) uniquely up to isomorphism
(back-and-forth).

I The tree (T,R) is interpretable in (M,D): vertices are
equivalence classes of triples.

I Hence, (M,D) is not ω-categorical.

I Aut(M,D) is 3-transitive.

I (M,D) has the strict order property and is NIP. Indeed

I Let K be a countable model of Th(Q2) with valuation ring O
having maximal ideal M. On PG1(K) (viewed as K ∪ {∞}),
define D(x, y; z, w) to hold if and only if the cross-ratio
(x−z)(y−w)
(x−w)(y−z) ∈ 1 +M. Then

(PG1(K), D) ∼= (M,D).

I ‘D-relations’ were axiomatised by Adeleke and Neumann.
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Theorem (Bodirsky, M (2013))

The structure (M,D) has no proper non-trivial definable reducts
or group-reducts.

Remark. This says in particular that Aut(M,D) is a
maximal-closed subgroup of Sym(M) which is not oligomorphic.
(A permutation group G on countably infinite M is oligomorphic if
G has finitely many orbits on Mn for all n.)

Problem: Find other kinds of non-ω-categorical structures with no
proper non-trivial reducts of either kind.

Guess: The above example (M,D) still works, starting from a
higher degree tree.
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Automorphisms of (M,D).

If a ∈ T , and x ∈M there is a unique ray xa ∈ x starting at a.
There is an equivalence relation Ea on M : put Ea(x, y) iff xa and
ya have a common edge of T . An Ea-class is called a cone (at a).
Now:

I for each a ∈ T there are three Ea-classes, with Aut(M)a
inducing S3 on them;

I the union of two cones at a is a cone (at a neighbour of a); so

I the complement of a cone is a cone;

I if U is a cone, then Aut(U,D) is transitive, and any
automorphism of (U,D) can be extended by idM\U to an aut.
of (M,D).

I if A ⊂M is finite, then Aut(M)(A) (the pointwise stabiliser
of A) has no finite orbits on M \A; hence acl(A) = A.
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Permutation groups.

Definition
Let (G,X) be a permutation group (group G acting faithfully on
X).

I If A ⊂ X with |A| > 1, then A is a Jordan set if G(X\A) is
transitive on A. It is proper if A 6= X, and if
|X \A| = n ∈ N, then (G,X) is not (n+ 1)-transitive.

I A Jordan group is a transitive permutation group with a
proper Jordan set.



Adeleke, M, Neumann (1995, 1996) Structure theorem for
primitive Jordan permutation groups. In particular,

Theorem
Let G be a 3-transitive but not highly transitive Jordan
permutation group on an infinite set X. Then G preserves on X
one of

I a 4-ary separation relation (from a total order on X)

I a D-relation on X (in which every cone is a Jordan set)

I a Steiner k-system on X (some k > 1)

I a ‘limit’ of Steiner systems on X.

Steiner k-system on X: collection of ‘blocks’ (subsets of X all of
the same size > k) such that any k elements of X lie on a unique
block.
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Sketch proof (that (M,D) has no proper non-trivial
group-reducts).

Any cone of (M,D) is a Jordan set for G := Aut(M,D). Let M′
be a non-trivial group-reduct of (M,D). Then
Aut(M,D) ≤ Aut(M′) < Sym(M).

Also, H := Aut(M ′) is a 3-transitive but not highly transitive
Jordan group.

Apply above classification. Rule out all but the D-relation case,
and show that if H preserves a D-relation D′ on M then it has the
same cones as (M,D), so D′ = D.



Sketch proof (that (M,D) has no proper non-trivial
group-reducts).

Any cone of (M,D) is a Jordan set for G := Aut(M,D). Let M′
be a non-trivial group-reduct of (M,D). Then
Aut(M,D) ≤ Aut(M′) < Sym(M).

Also, H := Aut(M ′) is a 3-transitive but not highly transitive
Jordan group.

Apply above classification. Rule out all but the D-relation case,
and show that if H preserves a D-relation D′ on M then it has the
same cones as (M,D), so D′ = D.



Sketch proof (that (M,D) has no proper non-trivial
group-reducts).

Any cone of (M,D) is a Jordan set for G := Aut(M,D). Let M′
be a non-trivial group-reduct of (M,D). Then
Aut(M,D) ≤ Aut(M′) < Sym(M).

Also, H := Aut(M ′) is a 3-transitive but not highly transitive
Jordan group.

Apply above classification. Rule out all but the D-relation case,
and show that if H preserves a D-relation D′ on M then it has the
same cones as (M,D), so D′ = D.



Sketch proof (that (M,D) has no proper non-trivial
group-reducts).

Any cone of (M,D) is a Jordan set for G := Aut(M,D). Let M′
be a non-trivial group-reduct of (M,D). Then
Aut(M,D) ≤ Aut(M′) < Sym(M).

Also, H := Aut(M ′) is a 3-transitive but not highly transitive
Jordan group.

Apply above classification. Rule out all but the D-relation case,
and show that if H preserves a D-relation D′ on M then it has the
same cones as (M,D), so D′ = D.



For example, suppose H preserves a Steiner k-system on M . Let
a1, . . . , ak ∈M be distinct, and let l be the block containing
a1, . . . , ak.

Let bk ∈M not lie on l, and let m be the block through
a1, . . . , ak−1, bk. Choose ak+1 6∈ {a1, . . . , ak} on l and
bk+1 6∈ {a1, . . . , ak−1, bk} on m.

Now l is the unique block containing a1, . . . , ak−2, ak, ak+1, and m
the unique block containing a1, . . . , ak−2, bk, bk+1, and these
blocks have common points a1, . . . , ak−1.

Put A := {a1, . . . , ak−2, ak, ak+1, bk, bk+1}. Then ak−1 lies in a
singleton orbit of H(A). This is impossible as ak−1 6∈ A and
H ≥ G.
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To show (M,D) has no proper non-trivial definable reducts. Let
M′ be a non-trivial definable reduct of (M,D).

Claim: It suffices to show that the set of cones of (M,D) is
uniformly definable in (M,D), i.e. there are formulas
φ(x, y1, . . . , yk) and ψ(y1, . . . , yk) over ∅ (in the language of M′)
such that the set of cones of (M,D) is exactly

{φ(M ′, ā) : ā ∈Mk,M′ |= ψ(ā)}.

Proof: Easy to check that the cones determine D.



Step 1. Show that some cone of (M,D) is definable in M′, by
some formula φ(x, ā). Hence, all cones are M′-definable via φ (as
Aut(M′) ≥ Aut(M,D), which is transitive on the set of cones).
Now aim to modify φ, and find ψ.

Step 2. Arrange that no element of ā lies in φ(M, ā), and let
ψ1(ā) express this.

Step 3. Let ψ2(ȳ) express also that the complement of the set
φ(M, ȳ) has the form φ(M, ȳ′) for some ȳ′. (Recall that the
complement of a cone in (M,D) is also a cone.)
Step 4. Let ψ3(ȳ) express a consequence of the Jordan property
of cones. Namely,

∀ȳ′(
n∧

i=1

¬φ(y′i, ȳ)→ ((φ(M, ȳ′) ⊇ φ(M, ȳ))∨φ(M, ȳ′)∩φ(M, ȳ) = ∅))).

Step 5. Reduce to l(ȳ) = 4. Reduce to case when φ(M, ā′) is a
cone or union of two cones at adjacent nodes. Finish.
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More on reducts

Partially order definable reducts of M, putting M1 ≤M2 iff M2

is ∅-definable in M1 (factoring out equi-definability). Partially
order group-reducts by group inclusion.

Lemma
Let M be saturated.
(i) The partial order of definable reducts of M embeds into the
partial order of group-reducts of M.
(ii) If Aut(M) is maximal-closed, then M has no proper
non-trivial definable reducts.

Proof. Easy compactness and saturation argument.
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Reducts of strongly minimal sets

Problem. Find strongly minimal sets (not ω-categorical) with no
proper non-trivial reducts of either kind.

Strong minimality is preserved by reducts, so structural results for
strongly minimal sets are relevant.

First try. Let (T,R) be the degree 3 tree (strongly minimal,
disintegrated, i.e. acl(A) =

⋃
(acl(a) : a ∈ A) for any A). The

‘distance 2’ graph T (2) is a proper non-trivial definable and group
reduct. T (2) is the disjoint union of two graphs, each built from
copies of K3 in a treelike way, three copies of K3 containing each
vertex. There is also a (non-definable) group-reduct, the
equivalence relation with 2 classes corresponding to ‘even distance
apart’. Any other reducts?
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Second try. Let k, l ∈ N with k ≥ 2 and l ≥ 3. Let Γk,l be the
graph consisting of copies of Kk+1 put together in a treelike way,
with l copies of Kk+1 containing each vertex.

The graph Γk,l is vertex transitive of finite degree kl, so strongly
minimal disintegrated. In fact these are essentially the finite degree
distance transitive graphs (the aut. group is transitive on the
pairs of vertices at any given distance).

Question. Does Γk,l have proper non-trivial group-reducts?

Theorem (Bodirsky, M)

M := Γk,l has no proper non-trivial definable reducts.
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Sketch Proof.

1. Any definable reduct M′ is strongly minimal and disintegrated,
so if M′ is non-trivial then |aclM′(a)| > 1 for any a. Hence in M′,
some set φ(M,a) has finite size greater than 1. By distance
transitivity, can assume there are 1 ≤ n1 < . . . < nt ∈ N such that
φ(x, y) is ‘d(x, y) ∈ {n1, . . . , nt}’.

2. Put n := nt. Show that for any vertices x, y,

d(x, y) ≤ 2n⇔M′ |= ∃z(φ(x, z) ∧ φ(y, z)).

Thus the balls B2n(x) are uniformly definable.

3. Show there is some γ ∈ N such that

x, y are adjacent in M⇔ B2n(x) ∩B2n(y) < γ.
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Problem. Describe reducts of other vertex-transitive (finite
degree) connected graphs. Do maximal-closed subgroups of
Sym(N) arise this way?

Non-disintegrated locally modular strongly minimal sets. For
finite fields F , vector spaces over F (and projective and affine
spaces over F ) are ω-categorical, and reducts can be handled by
the Cherlin-Harrington-Lachlan and Zilber work.

If V is a vector space over an infinite characteristic 0 field F , there
is a reduct (definable and group) (V,R), where

R(x, y)⇔ (2x = y ∨ 2y = x).

If F has characteristic p, there are proper reducts by viewing V as
over the prime subfield.
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spaces over F ) are ω-categorical, and reducts can be handled by
the Cherlin-Harrington-Lachlan and Zilber work.

If V is a vector space over an infinite characteristic 0 field F , there
is a reduct (definable and group) (V,R), where

R(x, y)⇔ (2x = y ∨ 2y = x).

If F has characteristic p, there are proper reducts by viewing V as
over the prime subfield.



Further questions

1. Define f on Q by f(x, y, z) := x− y + z. Does (Q, f) have any
proper non-trivial definable reducts?

Note: For each prime p, let vp be the p-adic valuation on Q and
define Cp(x, y, z) to hold iff vp(x− y) ≤ vp(y − z). The structures
(Q, Cp) are distinct group-reducts.

2. For 2 ≤ d ≤ ℵ0, are the groups AGLd(Q) and PGLd+1(Q)
maximal-closed, in their natural actions? Do the corresponding
strongly minimal structures have proper non-trivial definable
reducts? (They will be locally modular but not disintegrated.)

3. Does Sym(N) have any countable maximal-closed subgroups?

4. Is every closed proper subgroup of Sym(N) contained in a
maximal-closed subgroup of Sym(N)?
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