(Some more) local definability theory for holomorphic functions

Gareth Jones (Manchester)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The question

• In his paper 'Some local definability theory for holomorphic functions' Wilkie posed the following problem:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The question

 In his paper 'Some local definability theory for holomorphic functions' Wilkie posed the following problem: Characterize the class of holomorphic functions locally definable from a given collection of holomorphic functions in terms of *natural complex-analytic* closure conditions.

The question

 In his paper 'Some local definability theory for holomorphic functions' Wilkie posed the following problem: Characterize the class of holomorphic functions locally definable from a given collection of holomorphic functions in terms of *natural complex-analytic* closure conditions.

This is made precise on the next slide.

• Suppose that ${\mathcal F}$ is a collection of holomorphic functions, containing all polynomials.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Suppose that *F* is a collection of holomorphic functions, containing all polynomials. Let PR*F* be the collection of all functions of the form *f*|_B for *f* ∈ *F* and *B* a box such that the closure of *B* is contained in the domain of *f*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Suppose that *F* is a collection of holomorphic functions, containing all polynomials. Let PR*F* be the collection of all functions of the form *f*|_B for *f* ∈ *F* and *B* a box such that the closure of *B* is contained in the domain of *f*.
- Let $\mathbb{R}_{PR\mathcal{F}}$ be the expansion of the ordered field of reals by all the real and imaginary parts of the functions in $PR\mathcal{F}$.

- Suppose that *F* is a collection of holomorphic functions, containing all polynomials. Let PR*F* be the collection of all functions of the form *f*|_B for *f* ∈ *F* and *B* a box such that the closure of *B* is contained in the domain of *f*.
- Let $\mathbb{R}_{PR\mathcal{F}}$ be the expansion of the ordered field of reals by all the real and imaginary parts of the functions in $PR\mathcal{F}$.
- A holomorphic germ f at a is said to be *F*-definable if it is the germ of some ℝ_{PRF}-definable holomorphic function g : U → C at a, and a ∈ U.

- Suppose that *F* is a collection of holomorphic functions, containing all polynomials. Let PR*F* be the collection of all functions of the form *f*|_B for *f* ∈ *F* and *B* a box such that the closure of *B* is contained in the domain of *f*.
- Let $\mathbb{R}_{PR\mathcal{F}}$ be the expansion of the ordered field of reals by all the real and imaginary parts of the functions in $PR\mathcal{F}$.
- A holomorphic germ f at a is said to be *F*-definable if it is the germ of some ℝ_{PRF}-definable holomorphic function g : U → C at a, and a ∈ U. (Definable always means with parameters).

- Suppose that *F* is a collection of holomorphic functions, containing all polynomials. Let PR*F* be the collection of all functions of the form *f*|_B for *f* ∈ *F* and *B* a box such that the closure of *B* is contained in the domain of *f*.
- Let $\mathbb{R}_{PR\mathcal{F}}$ be the expansion of the ordered field of reals by all the real and imaginary parts of the functions in $PR\mathcal{F}$.
- A holomorphic germ f at a is said to be *F*-definable if it is the germ of some ℝ_{PRF}-definable holomorphic function g : U → C at a, and a ∈ U. (Definable always means with parameters).

• Then our problem is to characterize the *F*-definable holomorphic germs in terms of natural closure conditions on *F*.

- Suppose that *F* is a collection of holomorphic functions, containing all polynomials. Let PR*F* be the collection of all functions of the form *f*|_B for *f* ∈ *F* and *B* a box such that the closure of *B* is contained in the domain of *f*.
- Let $\mathbb{R}_{PR\mathcal{F}}$ be the expansion of the ordered field of reals by all the real and imaginary parts of the functions in $PR\mathcal{F}$.
- A holomorphic germ f at a is said to be *F*-definable if it is the germ of some ℝ_{PRF}-definable holomorphic function g : U → C at a, and a ∈ U. (Definable always means with parameters).
- Then our problem is to characterize the *F*-definable holomorphic germs in terms of natural closure conditions on *F*.
- This also makes sense for real-analytic functions.

• Schwarz reflection If f is an \mathcal{F} -definable holomorphic germ at the origin then the Schwarz reflection of f, defined by $f^{SR}(z) = \overline{f(\overline{z})}$ is also an \mathcal{F} -definable holomorphic germ.

- Schwarz reflection If f is an \mathcal{F} -definable holomorphic germ at the origin then the Schwarz reflection of f, defined by $f^{SR}(z) = \overline{f(\overline{z})}$ is also an \mathcal{F} -definable holomorphic germ.
- Differentiation If f is an \mathcal{F} -definable holomorphic germ then the germs of all the partial derivatives of f are also \mathcal{F} -definable.

- Schwarz reflection If f is an \mathcal{F} -definable holomorphic germ at the origin then the Schwarz reflection of f, defined by $f^{SR}(z) = \overline{f(\overline{z})}$ is also an \mathcal{F} -definable holomorphic germ.
- Differentiation If f is an \mathcal{F} -definable holomorphic germ then the germs of all the partial derivatives of f are also \mathcal{F} -definable.

We'll assume that $\ensuremath{\mathcal{F}}$ is closed under Schwarz reflection and differentiation.

- Schwarz reflection If f is an \mathcal{F} -definable holomorphic germ at the origin then the Schwarz reflection of f, defined by $f^{SR}(z) = \overline{f(\overline{z})}$ is also an \mathcal{F} -definable holomorphic germ.
- Differentiation If f is an \mathcal{F} -definable holomorphic germ then the germs of all the partial derivatives of f are also \mathcal{F} -definable.

We'll assume that $\ensuremath{\mathcal{F}}$ is closed under Schwarz reflection and differentiation.

 Composition If f, g₁,..., g_m are *F*-definable holomorphic germs such that the composition f ∘ (g₁,..., g_m) makes sense then the germ of the composition is also *F*-definable.

- Schwarz reflection If f is an \mathcal{F} -definable holomorphic germ at the origin then the Schwarz reflection of f, defined by $f^{SR}(z) = \overline{f(\overline{z})}$ is also an \mathcal{F} -definable holomorphic germ.
- Differentiation If f is an \mathcal{F} -definable holomorphic germ then the germs of all the partial derivatives of f are also \mathcal{F} -definable.

We'll assume that $\ensuremath{\mathcal{F}}$ is closed under Schwarz reflection and differentiation.

 Composition If f, g₁,..., g_m are *F*-definable holomorphic germs such that the composition f ∘ (g₁,..., g_m) makes sense then the germ of the composition is also *F*-definable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Implicit definability If F is an F-definable holomorphic germ at 0 in Cⁿ⁺¹ and f is a holomorphic germ at 0 in Cⁿ satisfying

$$F(0,f(0)) = 0 \neq \frac{\partial F}{\partial z_{n+1}}(0,f(0))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

then the germ f is also \mathcal{F} -definable.

Implicit definability If F is an F-definable holomorphic germ at 0 in Cⁿ⁺¹ and f is a holomorphic germ at 0 in Cⁿ satisfying

$$F(0,f(0)) = 0 \neq \frac{\partial F}{\partial z_{n+1}}(0,f(0))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

then the germ f is also \mathcal{F} -definable.

Implicit definability If F is an F-definable holomorphic germ at 0 in Cⁿ⁺¹ and f is a holomorphic germ at 0 in Cⁿ satisfying

$$F(0,f(0))=0\neq\frac{\partial F}{\partial z_{n+1}}(0,f(0))$$

then the germ f is also \mathcal{F} -definable.

Conjecture (~Wilkie)

Let $\tilde{\mathcal{F}}$ be the smallest collection of germs containing all germs of all functions in \mathcal{F} and closed under composition and implicit definability. If f is an \mathcal{F} -definable holomorphic germ then f is in $\tilde{\mathcal{F}}$.

• Monomial division

• Monomial division If f is an \mathcal{F} -definable holomorphic germ at the origin and f/z_i is holomorphic then f/z_i is \mathcal{F} -definable.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Monomial division If f is an \mathcal{F} -definable holomorphic germ at the origin and f/z_i is holomorphic then f/z_i is \mathcal{F} -definable.

Let \mathcal{F}^{RSW} be the smallest collection of germs containing all germs of all functions in \mathcal{F} and closed under composition, implicit definability and monomial division.

• Monomial division If f is an \mathcal{F} -definable holomorphic germ at the origin and f/z_i is holomorphic then f/z_i is \mathcal{F} -definable.

Let \mathcal{F}^{RSW} be the smallest collection of germs containing all germs of all functions in \mathcal{F} and closed under composition, implicit definability and monomial division.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Joint work with Jonathan Kirby and Tamara Servi) Wilkie's conjecture holds with \mathcal{F}^{RSW} in place of $\tilde{\mathcal{F}}$:

• Monomial division If f is an \mathcal{F} -definable holomorphic germ at the origin and f/z_i is holomorphic then f/z_i is \mathcal{F} -definable.

Let \mathcal{F}^{RSW} be the smallest collection of germs containing all germs of all functions in \mathcal{F} and closed under composition, implicit definability and monomial division.

Theorem (Joint work with Jonathan Kirby and Tamara Servi) Wilkie's conjecture holds with \mathcal{F}^{RSW} in place of $\tilde{\mathcal{F}}$: if f is an \mathcal{F} -definable holomorphic germ then f is in \mathcal{F}^{RSW} .

Suppose that C is a collection of real-analytic functions, containing all polynomials and closed under partial differentiation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose that C is a collection of real-analytic functions, containing all polynomials and closed under partial differentiation. All the above makes sense, and we have the following.

Suppose that C is a collection of real-analytic functions, containing all polynomials and closed under partial differentiation. All the above makes sense, and we have the following.

Theorem

Let C^{RSW} be the smallest collection of germs containing all germs in C and closed under composition, implicit definability and monomial division.

Suppose that C is a collection of real-analytic functions, containing all polynomials and closed under partial differentiation. All the above makes sense, and we have the following.

Theorem

Let C^{RSW} be the smallest collection of germs containing all germs in C and closed under composition, implicit definability and monomial division. If ϕ is a C-definable real-analytic germ then ϕ is in C^{RSW} .

Suppose that C is a collection of real-analytic functions, containing all polynomials and closed under partial differentiation. All the above makes sense, and we have the following.

Theorem

Let C^{RSW} be the smallest collection of germs containing all germs in C and closed under composition, implicit definability and monomial division. If ϕ is a C-definable real-analytic germ then ϕ is in C^{RSW} .

Ingredients for proof.

Suppose that C is a collection of real-analytic functions, containing all polynomials and closed under partial differentiation. All the above makes sense, and we have the following.

Theorem

Let C^{RSW} be the smallest collection of germs containing all germs in Cand closed under composition, implicit definability and monomial division. If ϕ is a C-definable real-analytic germ then ϕ is in C^{RSW} .

Ingredients for proof.

The proof relies on details of the proof in the paper 'Quasianalytic Denjoy-Carleman classes and o-minimality' by Rolin, Speissegger and Wilkie.

Suppose that C is a collection of real-analytic functions, containing all polynomials and closed under partial differentiation. All the above makes sense, and we have the following.

Theorem

Let C^{RSW} be the smallest collection of germs containing all germs in C and closed under composition, implicit definability and monomial division. If ϕ is a C-definable real-analytic germ then ϕ is in C^{RSW} .

Ingredients for proof.

The proof relies on details of the proof in the paper 'Quasianalytic Denjoy-Carleman classes and o-minimality' by Rolin, Speissegger and Wilkie. For the version without parameters we use a more explicit version of this due to Dan Miller.

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - のへで

• Suppose that all the functions in \mathcal{F} are defined on open sets symmetric with respect to complex conjugation, and that they all take real values at real arguments.

 Suppose that all the functions in *F* are defined on open sets symmetric with respect to complex conjugation, and that they all take real values at real arguments. (And *F* contains all real polynomials)

- Suppose that all the functions in *F* are defined on open sets symmetric with respect to complex conjugation, and that they all take real values at real arguments. (And *F* contains all real polynomials)
- Let \mathcal{F}^* be the smallest collection of germs containing all germs of functions in \mathcal{F} and closed under differentiation, composition, implicit differentiation, monomial division and the following operation:

- Suppose that all the functions in *F* are defined on open sets symmetric with respect to complex conjugation, and that they all take real values at real arguments. (And *F* contains all real polynomials)
- Let *F*^{*} be the smallest collection of germs containing all germs of functions in *F* and closed under differentiation, composition, implicit differentiation, monomial division and the following operation:
 If *f* in *F*^{*} is a germ at 0 in ℂⁿ with *f*(*x* + i*y*) = φ(*x*, *y*) + iψ(*x*, *y*). Then the germs of *F*_φ and *F*_ψ at 0 in ℂ²ⁿ are in *F*^{*}.

- Suppose that all the functions in *F* are defined on open sets symmetric with respect to complex conjugation, and that they all take real values at real arguments. (And *F* contains all real polynomials)
- Let *F*^{*} be the smallest collection of germs containing all germs of functions in *F* and closed under differentiation, composition, implicit differentiation, monomial division and the following operation:
 If *f* in *F*^{*} is a germ at 0 in ℂⁿ with *f*(*x* + i*y*) = φ(*x*, *y*) + iψ(*x*, *y*). Then the germs of *F*_φ and *F*_ψ at 0 in ℂ²ⁿ are in *F*^{*}.

Proposition

Suppose that f is an \mathcal{F} -definable holomorphic germ at 0, and takes real values at reals. Then f is in \mathcal{F}^* .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

If f is an \mathcal{F} -definable holomorphic germ then f is in \mathcal{F}^{RSW} .

Theorem

If f is an \mathcal{F} -definable holomorphic germ then f is in \mathcal{F}^{RSW} .

• To prove the general case, we use translations and tricks with Schwarz reflection to reduce to our germs all being of the special form.

Theorem

If f is an \mathcal{F} -definable holomorphic germ then f is in \mathcal{F}^{RSW} .

- To prove the general case, we use translations and tricks with Schwarz reflection to reduce to our germs all being of the special form.
- Then we use closure under Schwarz reflection to show that the odd closure condition in the previous slide is OK.

The end