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The question

• In his paper ‘Some local definability theory for holomorphic
functions’ Wilkie posed the following problem:

Characterize the class of holomorphic functions locally definable
from a given collection of holomorphic functions in terms of natural
complex-analytic closure conditions.

• This is made precise on the next slide.
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The setting

• Suppose that F is a collection of holomorphic functions, containing
all polynomials.

Let PRF be the collection of all functions of the
form f |B for f ∈ F and B a box such that the closure of B is
contained in the domain of f .

• Let RPRF be the expansion of the ordered field of reals by all the
real and imaginary parts of the functions in PRF .

• A holomorphic germ f at a is said to be F-definable if it is the germ
of some RPRF -definable holomorphic function g : U → C at a, and
a ∈ U. (Definable always means with parameters).

• Then our problem is to characterize the F-definable holomorphic
germs in terms of natural closure conditions on F .

• This also makes sense for real-analytic functions.
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Some closure conditions

• Schwarz reflection If f is an F-definable holomorphic germ at the
origin then the Schwarz reflection of f , defined by f SR(z) = f (z) is
also an F-definable holomorphic germ.

• Differentiation If f is an F-definable holomorphic germ then the
germs of all the partial derivatives of f are also F-definable.

We’ll assume that F is closed under Schwarz reflection and
differentiation.

• Composition If f , g1, . . . , gm are F-definable holomorphic germs
such that the composition f ◦ (g1, . . . , gm) makes sense then the
germ of the composition is also F-definable.
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Another closure property and a conjecture

• Implicit definability If F is an F-definable holomorphic germ at 0 in
Cn+1 and f is a holomorphic germ at 0 in Cn satisfying

F (0, f (0)) = 0 6= ∂F

∂zn+1
(0, f (0))

then the germ f is also F-definable.

Conjecture (∼Wilkie)

Let F̃ be the smallest collection of germs containing all germs of all
functions in F and closed under composition and implicit definability. If
f is an F-definable holomorphic germ then f is in F̃ .
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One more closure property and a theorem

• Monomial division If f is an F-definable holomorphic germ at the
origin and f /zi is holomorphic then f /zi is F-definable.

Let FRSW be the smallest collection of germs containing all germs of all
functions in F and closed under composition, implicit definability and
monomial division.

Theorem (Joint work with Jonathan Kirby and Tamara Servi)

Wilkie’s conjecture holds with FRSW in place of F̃ : if f is an
F-definable holomorphic germ then f is in FRSW.
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The real case

Suppose that C is a collection of real-analytic functions, containing all
polynomials and closed under partial differentiation. All the above makes
sense, and we have the following.

Theorem
Let CRSW be the smallest collection of germs containing all germs in C
and closed under composition, implicit definability and monomial
division. If φ is a C-definable real-analytic germ then φ is in CRSW.

Ingredients for proof.

The proof relies on details of the proof in the paper ‘Quasianalytic
Denjoy-Carleman classes and o-minimality’ by Rolin, Speissegger and
Wilkie. For the version without parameters we use a more explicit version
of this due to Dan Miller.
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From the real case to a special complex case

• Suppose that all the functions in F are defined on open sets
symmetric with respect to complex conjugation, and that they all
take real values at real arguments. (And F contains all real
polynomials)

• Let F∗ be the smallest collection of germs containing all germs of
functions in F and closed under differentiation, composition, implicit
differentiation, monomial division and the following operation:
If f in F∗ is a germ at 0 in Cn with f (x + iy) = φ(x , y) + iψ(x , y).
Then the germs of Fφ and Fψ at 0 in C2n are in F∗.

Proposition

Suppose that f is an F-definable holomorphic germ at 0, and takes real
values at reals. Then f is in F∗.
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The general complex case

Theorem
If f is an F-definable holomorphic germ then f is in FRSW.

• To prove the general case, we use translations and tricks with
Schwarz reflection to reduce to our germs all being of the special
form.

• Then we use closure under Schwarz reflection to show that the odd
closure condition in the previous slide is OK.
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The end


