Continuous model theory and the classification problem

Bradd Hart McMaster University

Joint work with Ilijas Farah

June 10, 2013

Outline

- Basics of C*-algebras
- · Reminder about continuous model theory
- Basic model theory of operator algebras
- The Elliott classification problem
- More advanced C*-algebra basics
- A model theory conjecture

Definition

A C*-algebra is a *-subalgebra *A* of the bounded linear operators B(H) on a complex Hilbert space *H* which is closed in the operator norm topology. Alternatively, a C*-algebra is a Banach *-algebra *A* which satisfies the C*-identity $||a^*a|| = ||a||^2$ for all $a \in A$.

Definition

A C*-algebra is a *-subalgebra *A* of the bounded linear operators B(H) on a complex Hilbert space *H* which is closed in the operator norm topology. Alternatively, a C*-algebra is a Banach *-algebra *A* which satisfies the C*-identity $||a^*a|| = ||a||^2$ for all $a \in A$.

Definition

A C*-algebra is a *-subalgebra *A* of the bounded linear operators B(H) on a complex Hilbert space *H* which is closed in the operator norm topology. Alternatively, a C*-algebra is a Banach *-algebra *A* which satisfies the C*-identity $||a^*a|| = ||a||^2$ for all $a \in A$.

The first sentence defines a concrete representation of a C*-algebra and the second gives an abstract definition.

Theorem (Gel'fand, Naimark, Sigal)

Every abstract C*-algebra has a concrete representation.

Definition

A C*-algebra is a *-subalgebra *A* of the bounded linear operators B(H) on a complex Hilbert space *H* which is closed in the operator norm topology. Alternatively, a C*-algebra is a Banach *-algebra *A* which satisfies the C*-identity $||a^*a|| = ||a||^2$ for all $a \in A$.

The first sentence defines a concrete representation of a C*-algebra and the second gives an abstract definition.

Theorem (Gel'fand, Naimark, Sigal)

Every abstract C*-algebra has a concrete representation.

Definition

A C*-algebra is a *-subalgebra *A* of the bounded linear operators B(H) on a complex Hilbert space *H* which is closed in the operator norm topology. Alternatively, a C*-algebra is a Banach *-algebra *A* which satisfies the C*-identity $||a^*a|| = ||a||^2$ for all $a \in A$.

The first sentence defines a concrete representation of a C*-algebra and the second gives an abstract definition.

Theorem (Gel'fand, Naimark, Sigal)

Every abstract C*-algebra has a concrete representation.

- $M_n(\mathbb{C})$; in general, B(H); $C_0(X)$ for any locally compact space X
 - these form all the commutative C*-algebras.

Definition

A C*-algebra is a *-subalgebra *A* of the bounded linear operators B(H) on a complex Hilbert space *H* which is closed in the operator norm topology. Alternatively, a C*-algebra is a Banach *-algebra *A* which satisfies the C*-identity $||a^*a|| = ||a||^2$ for all $a \in A$.

The first sentence defines a concrete representation of a C*-algebra and the second gives an abstract definition.

Theorem (Gel'fand, Naimark, Sigal)

Every abstract C*-algebra has a concrete representation.

- *M_n*(ℂ); in general, *B*(*H*); *C*₀(*X*) for any locally compact space *X* these form all the commutative C*-algebras.
- C*-algebras are closed under inductive limits where the relevant morphisms are *-homomorphisms.

Definition

A C*-algebra is a *-subalgebra *A* of the bounded linear operators B(H) on a complex Hilbert space *H* which is closed in the operator norm topology. Alternatively, a C*-algebra is a Banach *-algebra *A* which satisfies the C*-identity $||a^*a|| = ||a||^2$ for all $a \in A$.

The first sentence defines a concrete representation of a C*-algebra and the second gives an abstract definition.

Theorem (Gel'fand, Naimark, Sigal)

Every abstract C*-algebra has a concrete representation.

- *M_n*(ℂ); in general, *B*(*H*); *C*₀(*X*) for any locally compact space *X* these form all the commutative C*-algebras.
- C*-algebras are closed under inductive limits where the relevant morphisms are *-homomorphisms.
- C*-algebras are closed under tensor products but ...

If *A* is a unital C*-algebra and $a \in A$ then sp(a), the spectrum of *a*, is the set of $\lambda \in \mathbb{C}$ such that $a - \lambda I$ is not invertible.

If *A* is a unital C*-algebra and $a \in A$ then sp(a), the spectrum of *a*, is the set of $\lambda \in \mathbb{C}$ such that $a - \lambda I$ is not invertible.

Theorem (Spectral Theorem)

Suppose A is a unital C*-algebra and $a \in A$ is self-adjoint ($a^* = a$) then $C^*(a)$, the C*-subalgebra of A generated by a and I is isomorphic to C(sp(a)) via the map which sends a to the identity and I to 1.

If *A* is a unital C*-algebra and $a \in A$ then sp(a), the spectrum of *a*, is the set of $\lambda \in \mathbb{C}$ such that $a - \lambda I$ is not invertible.

Theorem (Spectral Theorem)

Suppose A is a unital C*-algebra and $a \in A$ is self-adjoint ($a^* = a$) then $C^*(a)$, the C*-subalgebra of A generated by a and I is isomorphic to C(sp(a)) via the map which sends a to the identity and I to 1.

If *A* is a unital C*-algebra and $a \in A$ then sp(a), the spectrum of *a*, is the set of $\lambda \in \mathbb{C}$ such that $a - \lambda I$ is not invertible.

Theorem (Spectral Theorem)

Suppose A is a unital C*-algebra and $a \in A$ is self-adjoint ($a^* = a$) then $C^*(a)$, the C*-subalgebra of A generated by a and I is isomorphic to C(sp(a)) via the map which sends a to the identity and I to 1.

Example: If *A* is a C*-algebra and $p \in A$, we call *p* a projection if $p^2 = p \ (= p^*)$. Claim: For every $\epsilon > 0$ there is a $\delta > 0$ such that if *a* is self-adjoint and $||a^2 - a|| < \delta$ then there is a projection *p* such that $||p - a|| < \epsilon$.

 A C*-algebra can be thought of as a metric structure by introducing a sort for each ball of operator norm N ∈ N.

- A C*-algebra can be thought of as a metric structure by introducing a sort for each ball of operator norm N ∈ N.
- One has function symbols for the sorted operations of +, · and * as well as the unary operations of multiplication by λ for every λ ∈ C. It is sometimes useful to consider an expanded language in which one has a function symbol for every *-polynomial (again properly sorted).

- A C*-algebra can be thought of as a metric structure by introducing a sort for each ball of operator norm N ∈ N.
- One has function symbols for the sorted operations of +, · and * as well as the unary operations of multiplication by λ for every λ ∈ C. It is sometimes useful to consider an expanded language in which one has a function symbol for every *-polynomial (again properly sorted).
- The only relation symbol is the operator norm $\|\cdot\|$.

- A C*-algebra can be thought of as a metric structure by introducing a sort for each ball of operator norm N ∈ N.
- One has function symbols for the sorted operations of +, · and * as well as the unary operations of multiplication by λ for every λ ∈ C. It is sometimes useful to consider an expanded language in which one has a function symbol for every *-polynomial (again properly sorted).
- The only relation symbol is the operator norm $\|\cdot\|$.
- The basic formulas of continuous logic which are relevant here are ||p(x
)|| where p(x
) is a *-polynomial.

- A C*-algebra can be thought of as a metric structure by introducing a sort for each ball of operator norm N ∈ N.
- One has function symbols for the sorted operations of +, · and * as well as the unary operations of multiplication by λ for every λ ∈ C. It is sometimes useful to consider an expanded language in which one has a function symbol for every *-polynomial (again properly sorted).
- The only relation symbol is the operator norm $\|\cdot\|$.
- The basic formulas of continuous logic which are relevant here are ||p(x
)|| where p(x
) is a *-polynomial.
- Formulas are closed under composition with continuous real-valued functions; moreover, if φ is a formula then so is $\sup_{x \in B_N} \varphi$ or $\inf_{x \in B_N} \varphi$. The interpretation of these formulas in a C*-algebra is standard.

The theory of C*-algebras

- Notice the if A is a C*-algebra, ā ∈ A and φ is a formula then φ^A(ā) is a number. In particular, if φ is a sentence then φ^A ∈ ℝ.
- *Th*(*A*), the theory of an algebra, is the function which to every sentence φ assigns φ^A. A theory is determined by its zero set.
- We say that a class of structures K is elementary if there is a set of sentences T such that A ∈ K iff φ^A = 0 for all φ ∈ T.

The theory of C*-algebras

- Notice the if A is a C*-algebra, ā ∈ A and φ is a formula then φ^A(ā) is a number. In particular, if φ is a sentence then φ^A ∈ ℝ.
- *Th*(*A*), the theory of an algebra, is the function which to every sentence φ assigns φ^A. A theory is determined by its zero set.
- We say that a class of structures K is elementary if there is a set of sentences T such that A ∈ K iff φ^A = 0 for all φ ∈ T.

Theorem

The class of C*-algebras is an elementary class. In fact, in the appropriate language it is a universal class.

Ultraproducts

 If A_i for i ∈ I are C*- algebras and U is an ultrafilter on I, one forms the norm ultraproduct as follows:

Let

$$\ell^{\infty}(\prod_{i\in I} A_i) = \{ ar{a} \in \prod_{i\in I} A_i : ext{for some } M, \|a_i\| \leq M ext{ for all } i \in I \}$$

and

$$c_U = \{ \bar{a} \in \ell^\infty(\prod_{i \in I} A_i) : \lim_{i \to U} \|a_i\| = 0 \}$$

• The ultraproduct is then $\prod_{i \in I} A_i/U := \ell^{\infty}(\prod_{i \in I} A_i)/c_U$.

Definable zero sets

Definition

Suppose that *M* is a metric structure and $\varphi(\bar{x})$ is a formula. We say that φ has a definable zero set if the distance function to the zero set of φ , { $\bar{a} \in M : \varphi^{M}(\bar{a}) = 0$ }, is given by a definable predicate in *M* i.e. a uniform limit of formulas.

Definable zero sets

Definition

Suppose that *M* is a metric structure and $\varphi(\bar{x})$ is a formula. We say that φ has a definable zero set if the distance function to the zero set of φ , { $\bar{a} \in M : \varphi^{M}(\bar{a}) = 0$ }, is given by a definable predicate in *M* i.e. a uniform limit of formulas.

Theorem

For a metric structure M and a formula φ , the following are equivalent:

- φ has a definable zero set.
- The zero set of φ can be quantified over.

Definition

In the language of C*-algebras, a formula $\varphi(\bar{x})$, or its zero set, is called a stable relation if for every C*-algebra A and for every $\epsilon > 0$ there is a $\delta > 0$ such that if $\bar{a} \in A$ and $|\varphi(\bar{a})| < \delta$ then there is $\bar{b} \in A$ such that $\varphi(\bar{b}) = 0$ and $||\bar{a} - \bar{b}|| < \epsilon$.

Definition

In the language of C*-algebras, a formula $\varphi(\bar{x})$, or its zero set, is called a stable relation if for every C*-algebra A and for every $\epsilon > 0$ there is a $\delta > 0$ such that if $\bar{a} \in A$ and $|\varphi(\bar{a})| < \delta$ then there is $\bar{b} \in A$ such that $\varphi(\bar{b}) = 0$ and $||\bar{a} - \bar{b}|| < \epsilon$.

Lemma

Among C*-algebras, the notions of stable relation and definable zero set are the same.

Definition

In the language of C*-algebras, a formula $\varphi(\bar{x})$, or its zero set, is called a stable relation if for every C*-algebra A and for every $\epsilon > 0$ there is a $\delta > 0$ such that if $\bar{a} \in A$ and $|\varphi(\bar{a})| < \delta$ then there is $\bar{b} \in A$ such that $\varphi(\bar{b}) = 0$ and $||\bar{a} - \bar{b}|| < \epsilon$.

Lemma

Among C*-algebras, the notions of stable relation and definable zero set are the same.

Definition

In the language of C*-algebras, a formula $\varphi(\bar{x})$, or its zero set, is called a stable relation if for every C*-algebra A and for every $\epsilon > 0$ there is a $\delta > 0$ such that if $\bar{a} \in A$ and $|\varphi(\bar{a})| < \delta$ then there is $\bar{b} \in A$ such that $\varphi(\bar{b}) = 0$ and $\|\bar{a} - \bar{b}\| < \epsilon$.

Lemma

Among C*-algebras, the notions of stable relation and definable zero set are the same.

Examples of stable relations:

• the set of projections.

Definition

In the language of C*-algebras, a formula $\varphi(\bar{x})$, or its zero set, is called a stable relation if for every C*-algebra A and for every $\epsilon > 0$ there is a $\delta > 0$ such that if $\bar{a} \in A$ and $|\varphi(\bar{a})| < \delta$ then there is $\bar{b} \in A$ such that $\varphi(\bar{b}) = 0$ and $\|\bar{a} - \bar{b}\| < \epsilon$.

Lemma

Among C*-algebras, the notions of stable relation and definable zero set are the same.

Examples of stable relations:

- the set of projections.
- the sets of self-adjoint elements, unitary elements (u*u = uu* = 1), positive elements (a*a); in general, the range of any term.

Definition

In the language of C*-algebras, a formula $\varphi(\bar{x})$, or its zero set, is called a stable relation if for every C*-algebra A and for every $\epsilon > 0$ there is a $\delta > 0$ such that if $\bar{a} \in A$ and $|\varphi(\bar{a})| < \delta$ then there is $\bar{b} \in A$ such that $\varphi(\bar{b}) = 0$ and $\|\bar{a} - \bar{b}\| < \epsilon$.

Lemma

Among C*-algebras, the notions of stable relation and definable zero set are the same.

Examples of stable relations:

- the set of projections.
- the sets of self-adjoint elements, unitary elements (u*u = uu* = 1), positive elements (a*a); in general, the range of any term.
- the sets of generators for subalgebras isomorphic to *M_n(C)*, for any *n* ∈ N or, in general, any finite-dimensional algebra.

The Elliott conjecture

The isomorphism type of a simple, separable, infinite-dimensional, unital nuclear C*-algebra is determined by its K-theory.

The classification programme for nuclear C*-algebras

The Elliott conjecture

The isomorphism type of a simple, separable, infinite-dimensional, unital nuclear C*-algebra is determined by its K-theory.

• For a C*-algebra *A*, there is an invariant called the Elliott invariant which for the record is defined as:

 $Ell(A) = ((K_0(A), K_0^+(A), [1_A]), K_1(A), Tr(A), \rho_A)$

The classification programme for nuclear C*-algebras

The Elliott conjecture

The isomorphism type of a simple, separable, infinite-dimensional, unital nuclear C*-algebra is determined by its K-theory.

• For a C*-algebra *A*, there is an invariant called the Elliott invariant which for the record is defined as:

 $EII(A) = ((K_0(A), K_0^+(A), [1_A]), K_1(A), Tr(A), \rho_A)$

• There are other invariants which come up like KK-theory and the Cuntz semi-group but I won't focus on them.

Definition

A C*-algebra A is called nuclear if for all C*-algebras B, $A \overline{\otimes} B$ is uniquely defined.

Definition

A C*-algebra A is called nuclear if for all C*-algebras B, $A \overline{\otimes} B$ is uniquely defined.

Examples:

• All abelian C*-algebras are nuclear.

Definition

A C*-algebra A is called nuclear if for all C*-algebras B, $A \overline{\otimes} B$ is uniquely defined.

- All abelian C*-algebras are nuclear.
- *M_n*(ℂ) is nuclear but *B*(*H*) for an infinite-dimensional Hilbert space *H* is not nuclear.

Definition

A C*-algebra A is called nuclear if for all C*-algebras B, $A \overline{\otimes} B$ is uniquely defined.

- All abelian C*-algebras are nuclear.
- *M_n*(ℂ) is nuclear but *B*(*H*) for an infinite-dimensional Hilbert space *H* is not nuclear.
- The class of nuclear algebras is closed under tensor products hence $M_n(C(X))$ is nuclear for any compact space X.

Nuclear algebras

Definition

A C*-algebra A is called nuclear if for all C*-algebras B, $A \overline{\otimes} B$ is uniquely defined.

Examples:

- All abelian C*-algebras are nuclear.
- *M_n*(ℂ) is nuclear but *B*(*H*) for an infinite-dimensional Hilbert space *H* is not nuclear.
- The class of nuclear algebras is closed under tensor products hence $M_n(C(X))$ is nuclear for any compact space X.
- The class of nuclear algebras is closed under inductive limits; UHF (uniformly hyperfinite) algebras are limits of matrix algebras; AF (approximately finite dimensional) algebras are limits of finite-dimensional algebras.

Nuclear algebras

Definition

A C*-algebra A is called nuclear if for all C*-algebras B, $A \overline{\otimes} B$ is uniquely defined.

Examples:

- All abelian C*-algebras are nuclear.
- *M_n*(ℂ) is nuclear but *B*(*H*) for an infinite-dimensional Hilbert space *H* is not nuclear.
- The class of nuclear algebras is closed under tensor products hence $M_n(C(X))$ is nuclear for any compact space X.
- The class of nuclear algebras is closed under inductive limits; UHF (uniformly hyperfinite) algebras are limits of matrix algebras; AF (approximately finite dimensional) algebras are limits of finite-dimensional algebras.
- The class of nuclear algebras is not closed under ultraproducts or even ultrapowers.

Nuclear algebras, cont'd

Definition

- A element of a C*-algebra A is said to be positive if it is of the form a*a for some a ∈ A.
- A linear map *f* : *A* → *B* is positive if whenever *a* ∈ *A* is positive then so is *f*(*a*).
- A linear map *f* : *A* → *B* is completely positive if the induced map from *M_n*(*A*) to *M_n*(*B*) is positive for all *n*.
- A map *f* is contractive if $||f|| \le 1$.

Nuclear algebras, cont'd

Definition

- A element of a C*-algebra A is said to be positive if it is of the form a*a for some a ∈ A.
- A linear map *f* : *A* → *B* is positive if whenever *a* ∈ *A* is positive then so is *f*(*a*).
- A linear map *f* : *A* → *B* is completely positive if the induced map from *M_n*(*A*) to *M_n*(*B*) is positive for all *n*.
- A map *f* is contractive if $||f|| \le 1$.

Theorem (Stinespring)

For any completely positive map $f : A \to B(H)$ there is a Hilbert space K, *-homomorphism $\pi : A \to B(K)$ and $V \in B(K, H)$ such that $f(a) = V\pi(a)V^*$.

Nuclear algebras: good news and bad news

Definition

A C*-algebra *A* has the contractive positive approximation property (CPAP) if for every $\bar{a} \in A$ and $\epsilon > 0$ there is an *n* and cpc maps $\sigma : A \to M_n(\mathbb{C})$ and $\tau : M_n(\mathbb{C}) \to A$ such that $\|\bar{a} - \tau(\sigma(\bar{a}))\| < \epsilon$.

Nuclear algebras: good news and bad news

Definition

A C*-algebra *A* has the contractive positive approximation property (CPAP) if for every $\bar{a} \in A$ and $\epsilon > 0$ there is an *n* and cpc maps $\sigma : A \to M_n(\mathbb{C})$ and $\tau : M_n(\mathbb{C}) \to A$ such that $\|\bar{a} - \tau(\sigma(\bar{a}))\| < \epsilon$.

Theorem (Choi-Effros, Kirchberg)

A C*-algebra A is nuclear iff it satisfies the CPAP.

Definition

A C*-algebra *A* has the contractive positive approximation property (CPAP) if for every $\bar{a} \in A$ and $\epsilon > 0$ there is an *n* and cpc maps $\sigma : A \to M_n(\mathbb{C})$ and $\tau : M_n(\mathbb{C}) \to A$ such that $\|\bar{a} - \tau(\sigma(\bar{a}))\| < \epsilon$.

Theorem (Choi-Effros, Kirchberg)

A C*-algebra A is nuclear iff it satisfies the CPAP.

Theorem

There are countably many partial types such that a C*-algebra is nuclear iff it omits all of these types.

The definition of K₀

Definition

For any C*-algebra *A*, consider the equivalence relation \sim on projections in *A* given by $p \sim q$ iff there is some $v \in A$, $vpv^* = q$ and $v^*qv = p$.

Consider the (non-unital) *-homomorphism $\Phi_n : M_n(A) \to M_{n+1}(A)$ defined by

$$\mathbf{a}\mapsto \left(egin{array}{cc} \mathbf{a} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array}
ight)$$

and let $M_{\infty} = \lim_{n \to \infty} M_n(A)$. We should really complete this ...

Let $V(A) = Proj(M_{\infty}(A))/\sim$.

V(A) has an additive structure defined as follows: if $p, q \in V(A)$ then $p \oplus q$ is

$$\left(\begin{array}{cc} p & 0 \\ 0 & q \end{array}\right)$$

Definition

 $K_0(A)$ is the Grothendieck group generated from $(V(A), \oplus)$ and $K_0^+(A)$ is the image of V(A) in $K_0(A)$; if A is unital then the constant $[1_A]$ corresponds to the identity in A.

Examples:

Definition

 $K_0(A)$ is the Grothendieck group generated from $(V(A), \oplus)$ and $K_0^+(A)$ is the image of V(A) in $K_0(A)$; if A is unital then the constant $[1_A]$ corresponds to the identity in A.

Examples:

K₀(M_n(ℂ)) is (ℤ, ℕ, n).

Definition

 $K_0(A)$ is the Grothendieck group generated from $(V(A), \oplus)$ and $K_0^+(A)$ is the image of V(A) in $K_0(A)$; if A is unital then the constant $[1_A]$ corresponds to the identity in A.

Examples:

- *K*₀(*M_n*(ℂ)) is (ℤ, ℕ, *n*).
- If *H* is infinite-dimensional then $K_0(B(H))$ is 0.

Definition

 $K_0(A)$ is the Grothendieck group generated from $(V(A), \oplus)$ and $K_0^+(A)$ is the image of V(A) in $K_0(A)$; if A is unital then the constant $[1_A]$ corresponds to the identity in A.

Examples:

- *K*₀(*M_n*(ℂ)) is (ℤ, ℕ, *n*).
- If *H* is infinite-dimensional then $K_0(B(H))$ is 0.
- Consider $A = \lim_{n} M_{2^n}(\mathbb{C})$ where the given morphisms are $M_{2^n}(\mathbb{C}) \hookrightarrow M_{2^{n+1}}(\mathbb{C})$ such that

$$a\mapsto \left(egin{array}{cc} a & 0 \\ 0 & a \end{array}
ight)$$

Then $K_0(A)$ is the dyadic rationals with the unit associated to 1.

Examples of K_0 , cont'd

 In general, if A = lim_k M_{n(k)} where n(k)|n(k + 1) for all k and the morphisms are given by diagonal maps

$$a\mapsto \left(egin{array}{ccc} a&&&0\&a&&\&&&\&&\&&\ddots&\&0&&&a\end{array}
ight)$$

then $K_0(A) = \{m/n : m \in \mathbb{Z} \text{ and } n | n(k) \text{ for some } k\}.$

The main actors in K-theory for nuclear C*-algebras

- We have already introduced $(K_0(A), K_0^+(A), [1_A])$.
- $K_1(A) = K_0(C_0((0,1),A)).$
- Tr(A) is the set of traces on A i.e. all positive linear functionals τ on A such that $\tau(1) = 1$, $\tau(x^*) = \overline{\tau(x)}$ and $\tau(xy) = \tau(yx)$.
- ρ_A is the natural pairing of Tr(A) and $K_0(A)$.

The main actors in K-theory for nuclear C*-algebras

- We have already introduced $(K_0(A), K_0^+(A), [1_A])$.
- $K_1(A) = K_0(C_0((0,1),A)).$
- Tr(A) is the set of traces on A i.e. all positive linear functionals τ on A such that $\tau(1) = 1$, $\tau(x^*) = \overline{\tau(x)}$ and $\tau(xy) = \tau(yx)$.
- ρ_A is the natural pairing of Tr(A) and $K_0(A)$.
- The form of the Elliott conjecture which states that the Elliott invariant classifies all simple, separable, infinite-dimensional, unital nuclear algebras is false there are counter-examples of different types with the first ones due to Toms and separately Rørdam.

The main actors in K-theory for nuclear C*-algebras

- We have already introduced $(K_0(A), K_0^+(A), [1_A])$.
- $K_1(A) = K_0(C_0((0,1),A)).$
- Tr(A) is the set of traces on A i.e. all positive linear functionals τ on A such that $\tau(1) = 1$, $\tau(x^*) = \overline{\tau(x)}$ and $\tau(xy) = \tau(yx)$.
- ρ_A is the natural pairing of Tr(A) and $K_0(A)$.
- The form of the Elliott conjecture which states that the Elliott invariant classifies all simple, separable, infinite-dimensional, unital nuclear algebras is false there are counter-examples of different types with the first ones due to Toms and separately Rørdam.
- A search is on for a new invariant which might classify nuclear algebras.

Theorem (Elliott)

The class of AF algebras can be classified by K_0 .

Theorem (Elliott)

The class of AF algebras can be classified by K_0 .

Theorem (Elliott)

The class of AF algebras can be classified by K_0 .

Let's do a special case of this result due to Glimm.

Definition

For a UHF algebra $A = \lim_{k} M_{n(k)}$, let the GI(A), the generalized integer of A be the function which assigns to every prime p the supremum of all n such that p^{n} divides n(k) for some k; this can be infinite.

Theorem (Elliott)

The class of AF algebras can be classified by K_0 .

Let's do a special case of this result due to Glimm.

Definition

For a UHF algebra $A = \lim_{k} M_{n(k)}$, let the GI(A), the generalized integer of A be the function which assigns to every prime p the supremum of all n such that p^{n} divides n(k) for some k; this can be infinite.

Theorem (Glimm)

If A and B are separable, unital UHF algebras then $A \cong B$ iff GI(A) = GI(B).

A proof of Glimm's theorem

Sketch of proof: One checks that UHF algebras have a unique trace and the values of this trace on a UHF algebra *A* are of the form $\{k/n : k | GI(A)\}$.

A proof of Glimm's theorem

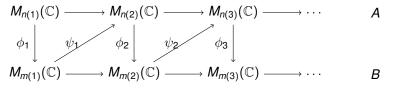
Sketch of proof: One checks that UHF algebras have a unique trace and the values of this trace on a UHF algebra *A* are of the form $\{k/n : k|GI(A)\}$.

Now if GI(A) = GI(B) then we can arrange in a back and forth fashion that $A = \lim_{k} M_{n(k)}$ and $B = \lim_{k} M_{m(k)}$ such that for all k, n(k)|m(k)|n(k+1). It is possible then to create a sequence of maps $\varphi_k : M_{n(k)} \to M_{m(k)}$ and $\psi_k : M_{m(k)} \to M_{n(k+1)}$ which additionally have the necessary commutation to make A and B isomorphic.

A proof of Glimm's theorem

Sketch of proof: One checks that UHF algebras have a unique trace and the values of this trace on a UHF algebra *A* are of the form $\{k/n : k|GI(A)\}$.

Now if GI(A) = GI(B) then we can arrange in a back and forth fashion that $A = \lim_{k} M_{n(k)}$ and $B = \lim_{k} M_{m(k)}$ such that for all k, n(k)|m(k)|n(k+1). It is possible then to create a sequence of maps $\varphi_k : M_{n(k)} \to M_{m(k)}$ and $\psi_k : M_{m(k)} \to M_{n(k+1)}$ which additionally have the necessary commutation to make A and B isomorphic.



Model theoretic version of the Elliott conjecture

Simple, separable, infinite-dimensional, unital nuclear algebras are classified by their Elliott invariant and their first order continuous theory.

In the case of a separable, unital UHF algebra A, K₀(A) is a rank 1, torsion-free abelian group where we have specified a constant. This is determined by Gl(A) by Glimm's theorem.

- In the case of a separable, unital UHF algebra A, K₀(A) is a rank
 1, torsion-free abelian group where we have specified a constant. This is determined by Gl(A) by Glimm's theorem.
- Equivalently, the theory knows the generalized integer for a separable, unital UHF algebra A = lim_k M_{m(k)}. In fact, M_n embeds into A iff n divides n(k) for some k.

- In the case of a separable, unital UHF algebra A, K₀(A) is a rank
 1, torsion-free abelian group where we have specified a constant. This is determined by GI(A) by Glimm's theorem.
- Equivalently, the theory knows the generalized integer for a separable, unital UHF algebra A = lim_k M_{m(k)}. In fact, M_n embeds into A iff n divides n(k) for some k.
- Round 1 a draw.

• A classical result of Dixmier which generalizes Glimm's theorem shows that non-unital separable UHF algebras are classified by K_0 .

- A classical result of Dixmier which generalizes Glimm's theorem shows that non-unital separable UHF algebras are classified by K_0 .
- In this case, K_0 is an arbitrary rank 1, torsion-free abelian group.

- A classical result of Dixmier which generalizes Glimm's theorem shows that non-unital separable UHF algebras are classified by K_0 .
- In this case, K_0 is an arbitrary rank 1, torsion-free abelian group.
- The isomorphism relation for such groups is known not to be smooth in the sense of Borel equivalence relations.

- A classical result of Dixmier which generalizes Glimm's theorem shows that non-unital separable UHF algebras are classified by K_0 .
- In this case, K_0 is an arbitrary rank 1, torsion-free abelian group.
- The isomorphism relation for such groups is known not to be smooth in the sense of Borel equivalence relations.
- The theory of a C*-algebra is a smooth invariant and so Dixmier's result shows that *K*₀ and not the theory captures isomorphism at least for non-unital separable UHF algebras.

- A classical result of Dixmier which generalizes Glimm's theorem shows that non-unital separable UHF algebras are classified by K_0 .
- In this case, K_0 is an arbitrary rank 1, torsion-free abelian group.
- The isomorphism relation for such groups is known not to be smooth in the sense of Borel equivalence relations.
- The theory of a C*-algebra is a smooth invariant and so Dixmier's result shows that *K*₀ and not the theory captures isomorphism at least for non-unital separable UHF algebras.
- Advantage K_0 (and descriptive set theory).

• The most general counter-examples to the form of the Elliott conjecture which says that *Ell*(*A*) is a sufficient invariant are due to Toms, Annals of Math, 2008.

- The most general counter-examples to the form of the Elliott conjecture which says that *Ell*(*A*) is a sufficient invariant are due to Toms, Annals of Math, 2008.
- He gave continuum many simple separable nuclear C*-algebras with identical Elliott invariant that were not isomorphic.

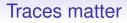
- The most general counter-examples to the form of the Elliott conjecture which says that *Ell*(*A*) is a sufficient invariant are due to Toms, Annals of Math, 2008.
- He gave continuum many simple separable nuclear C*-algebras with identical Elliott invariant that were not isomorphic.
- He used something called the Cuntz semigroup to show they were not isomorphic and in particular computed a number called the radius of comparison it was this value that differentiated the algebras.

- The most general counter-examples to the form of the Elliott conjecture which says that *Ell*(*A*) is a sufficient invariant are due to Toms, Annals of Math, 2008.
- He gave continuum many simple separable nuclear C*-algebras with identical Elliott invariant that were not isomorphic.
- He used something called the Cuntz semigroup to show they were not isomorphic and in particular computed a number called the radius of comparison it was this value that differentiated the algebras.
- In joint work with Leonel Robert, we showed that the radius of comparison is known to the theory of an algebra it is preserved under ultraproducts and elementary submodels.

- The most general counter-examples to the form of the Elliott conjecture which says that *Ell*(*A*) is a sufficient invariant are due to Toms, Annals of Math, 2008.
- He gave continuum many simple separable nuclear C*-algebras with identical Elliott invariant that were not isomorphic.
- He used something called the Cuntz semigroup to show they were not isomorphic and in particular computed a number called the radius of comparison it was this value that differentiated the algebras.
- In joint work with Leonel Robert, we showed that the radius of comparison is known to the theory of an algebra it is preserved under ultraproducts and elementary submodels.
- Advantage Th(A).

• Nuclear algebras do not form an elementary class but it is interesting to consider the theory of nuclear algebras.

- Nuclear algebras do not form an elementary class but it is interesting to consider the theory of nuclear algebras.
- Question: is every C*-algebra elementarily equivalent to a nuclear algebra?



- Nuclear algebras do not form an elementary class but it is interesting to consider the theory of nuclear algebras.
- Question: is every C*-algebra elementarily equivalent to a nuclear algebra?

• No. Let
$$A = \prod_{n \in \mathbb{N}} M_n(C) / U$$
 where U is a non-principal ultrafilter on \mathbb{N} .

- Nuclear algebras do not form an elementary class but it is interesting to consider the theory of nuclear algebras.
- Question: is every C*-algebra elementarily equivalent to a nuclear algebra?
- No. Let $A = \prod_{n \in \mathbb{N}} M_n(C) / U$ where U is a non-principal ultrafilter on \mathbb{N} .
- We need some facts about A: A has a trace and it is definable say by a formula φ.

- Nuclear algebras do not form an elementary class but it is interesting to consider the theory of nuclear algebras.
- Question: is every C*-algebra elementarily equivalent to a nuclear algebra?

• No. Let
$$A = \prod_{n \in \mathbb{N}} M_n(C) / U$$
 where U is a non-principal ultrafilter on \mathbb{N} .

- We need some facts about A: A has a trace and it is definable say by a formula φ.
- Now suppose that $A \equiv B$ where *B* is some simple, separable, nuclear algebra.

 But then φ would define a trace on B which would mean that the associated von Neumann algebra is the hyperfinite II₁ factor R.

- But then φ would define a trace on B which would mean that the associated von Neumann algebra is the hyperfinite II₁ factor R.
- In earlier work with Farah and Sherman we showed that a property identified by von Neumann called property Γ for tracial von Neumann algebras was elementary.

- But then φ would define a trace on B which would mean that the associated von Neumann algebra is the hyperfinite II₁ factor R.
- In earlier work with Farah and Sherman we showed that a property identified by von Neumann called property Γ for tracial von Neumann algebras was elementary.
- It is known that *R* satisfies property Γ and that *A* modulo its trace does not so *A* ≠ *B*.

- But then φ would define a trace on B which would mean that the associated von Neumann algebra is the hyperfinite II₁ factor R.
- In earlier work with Farah and Sherman we showed that a property identified by von Neumann called property Γ for tracial von Neumann algebras was elementary.
- It is known that *R* satisfies property Γ and that *A* modulo its trace does not so *A* ≠ *B*.
- Question: what is the theory of the class of nuclear algebras? Is it the theory of C*-algebras?