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C*-algebra basics

Definition
A C*-algebra is a *-subalgebra A of the bounded linear operators
B(H) on a complex Hilbert space H which is closed in the operator
norm topology. Alternatively, a C*-algebra is a Banach *-algebra A
which satisfies the C*-identity ‖a∗a‖ = ‖a‖2 for all a ∈ A.

The first sentence defines a concrete representation of a C*-algebra
and the second gives an abstract definition.

Theorem (Gel’fand, Naimark, Sigal)
Every abstract C*-algebra has a concrete representation.

Examples:

• Mn(C); in general, B(H); C0(X ) for any locally compact space X
- these form all the commutative C*-algebras.

• C*-algebras are closed under inductive limits where the relevant
morphisms are *-homomorphisms.

• C*-algebras are closed under tensor products but ...
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Spectral Theorem

Definition
If A is a unital C*-algebra and a ∈ A then sp(a), the spectrum of a, is
the set of λ ∈ C such that a− λI is not invertible.

Theorem (Spectral Theorem)
Suppose A is a unital C*-algebra and a ∈ A is self-adjoint (a∗ = a)
then C∗(a), the C*-subalgebra of A generated by a and I is
isomorphic to C(sp(a)) via the map which sends a to the identity and
I to 1.
Example: If A is a C*-algebra and p ∈ A, we call p a projection if
p2 = p (= p∗).
Claim: For every ε > 0 there is a δ > 0 such that if a is self-adjoint
and ‖a2 − a‖ < δ then there is a projection p such that ‖p − a‖ < ε.
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Continuous model theory of C*-algebras

• A C*-algebra can be thought of as a metric structure by
introducing a sort for each ball of operator norm N ∈ N.

• One has function symbols for the sorted operations of +, · and ∗
as well as the unary operations of multiplication by λ for every
λ ∈ C. It is sometimes useful to consider an expanded language
in which one has a function symbol for every *-polynomial (again
properly sorted).

• The only relation symbol is the operator norm ‖ · ‖.
• The basic formulas of continuous logic which are relevant here

are ‖p(x̄)‖ where p(x̄) is a *-polynomial.
• Formulas are closed under composition with continuous

real-valued functions; moreover, if ϕ is a formula then so is
supx∈BN

ϕ or infx∈BN ϕ. The interpretation of these formulas in a
C*-algebra is standard.
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The theory of C*-algebras

• Notice the if A is a C*-algebra, ā ∈ A and ϕ is a formula then
ϕA(ā) is a number. In particular, if ϕ is a sentence then ϕA ∈ R.

• Th(A), the theory of an algebra, is the function which to every
sentence ϕ assigns ϕA. A theory is determined by its zero set.

• We say that a class of structures K is elementary if there is a set
of sentences T such that A ∈ K iff ϕA = 0 for all ϕ ∈ T .

Theorem
The class of C*-algebras is an elementary class. In fact, in the
appropriate language it is a universal class.
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Ultraproducts

• If Ai for i ∈ I are C*- algebras and U is an ultrafilter on I, one
forms the norm ultraproduct as follows:

• Let

`∞(
∏
i∈I

Ai ) = {ā ∈
∏
i∈I

Ai : for some M, ‖ai‖ ≤ M for all i ∈ I}

and
cU = {ā ∈ `∞(

∏
i∈I

Ai ) : lim
i→U
‖ai‖ = 0}

• The ultraproduct is then
∏
i∈I

Ai/U := `∞(
∏
i∈I

Ai )/cU .



Definable zero sets

Definition
Suppose that M is a metric structure and ϕ(x̄) is a formula. We say
that ϕ has a definable zero set if the distance function to the zero set
of ϕ, {ā ∈ M : ϕM(ā) = 0}, is given by a definable predicate in M i.e.
a uniform limit of formulas.

Theorem
For a metric structure M and a formula ϕ, the following are
equivalent:

• ϕ has a definable zero set.
• The zero set of ϕ can be quantified over.
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Stable relations

Definition
In the language of C*-algebras, a formula ϕ(x̄), or its zero set, is
called a stable relation if for every C*-algebra A and for every ε > 0
there is a δ > 0 such that if ā ∈ A and |ϕ(ā)| < δ then there is b̄ ∈ A
such that ϕ(b̄) = 0 and ‖ā− b̄‖ < ε.

Lemma
Among C*-algebras, the notions of stable relation and definable zero
set are the same.
Examples of stable relations:

• the set of projections.
• the sets of self-adjoint elements, unitary elements

(u∗u = uu∗ = 1), positive elements (a∗a); in general, the range of
any term.

• the sets of generators for subalgebras isomorphic to Mn(C), for
any n ∈ N or, in general, any finite-dimensional algebra.
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such that ϕ(b̄) = 0 and ‖ā− b̄‖ < ε.
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The classification programme for nuclear C*-algebras

The Elliott conjecture
The isomorphism type of a simple, separable, infinite-dimensional,
unital nuclear C*-algebra is determined by its K-theory.

• For a C*-algebra A, there is an invariant called the Elliott
invariant which for the record is defined as:

Ell(A) = ((K0(A),K+
0 (A), [1A]),K1(A),Tr(A), ρA)

• There are other invariants which come up like KK-theory and the
Cuntz semi-group but I won’t focus on them.
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Nuclear algebras

Definition
A C*-algebra A is called nuclear if for all C*-algebras B, A⊗̄B is
uniquely defined.
Examples:

• All abelian C*-algebras are nuclear.
• Mn(C) is nuclear but B(H) for an infinite-dimensional Hilbert

space H is not nuclear.
• The class of nuclear algebras is closed under tensor products

hence Mn(C(X )) is nuclear for any compact space X .
• The class of nuclear algebras is closed under inductive limits;

UHF (uniformly hyperfinite) algebras are limits of matrix algebras;
AF (approximately finite dimensional) algebras are limits of
finite-dimensional algebras.

• The class of nuclear algebras is not closed under ultraproducts
or even ultrapowers.
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Nuclear algebras, cont’d

Definition
• A element of a C*-algebra A is said to be positive if it is of the

form a∗a for some a ∈ A.
• A linear map f : A→ B is positive if whenever a ∈ A is positive

then so is f (a).
• A linear map f : A→ B is completely positive if the induced map

from Mn(A) to Mn(B) is positive for all n.
• A map f is contractive if ‖f‖ ≤ 1.

Theorem (Stinespring)
For any completely positive map f : A→ B(H) there is a Hilbert
space K , *-homomorphism π : A→ B(K ) and V ∈ B(K ,H) such that
f (a) = Vπ(a)V ∗.
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Nuclear algebras: good news and bad news

Definition
A C*-algebra A has the contractive positive approximation property
(CPAP) if for every ā ∈ A and ε > 0 there is an n and cpc maps
σ : A→ Mn(C) and τ : Mn(C)→ A such that ‖ā− τ(σ(ā))‖ < ε.

Theorem (Choi-Effros, Kirchberg)
A C*-algebra A is nuclear iff it satisfies the CPAP.

Theorem
There are countably many partial types such that a C*-algebra is
nuclear iff it omits all of these types.
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The definition of K0

Definition
For any C*-algebra A, consider the equivalence relation ∼ on
projections in A given by p ∼ q iff there is some v ∈ A, vpv∗ = q and
v∗qv = p.

Consider the (non-unital) *-homomorphism Φn : Mn(A)→ Mn+1(A)
defined by

a 7→
(

a 0
0 0

)
and let M∞ = limn Mn(A). We should really complete this ...

Let V (A) = Proj(M∞(A))/∼.

V (A) has an additive structure defined as follows: if p,q ∈ V (A) then
p ⊕ q is (

p 0
0 q

)



The definition of K0, cont’d

Definition
K0(A) is the Grothendieck group generated from (V (A),⊕) and
K+

0 (A) is the image of V (A) in K0(A); if A is unital then the constant
[1A] corresponds to the identity in A.
Examples:

• K0(Mn(C)) is (Z,N,n).
• If H is infinite-dimensional then K0(B(H)) is 0.
• Consider A = limn M2n (C) where the given morphisms are

M2n (C) ↪→ M2n+1 (C) such that

a 7→
(

a 0
0 a

)
Then K0(A) is the dyadic rationals with the unit associated to 1.
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Examples of K0, cont’d

• In general, if A = limk Mn(k) where n(k)|n(k + 1) for all k and the
morphisms are given by diagonal maps

a 7→


a 0

a
. . .

0 a


then K0(A) = {m/n : m ∈ Z and n|n(k) for some k}.



The main actors in K-theory for nuclear C*-algebras

• We have already introduced (K0(A),K+
0 (A), [1A]).

• K1(A) = K0(C0((0,1),A)).
• Tr(A) is the set of traces on A i.e. all positive linear functionals τ

on A such that τ(1) = 1, τ(x∗) = τ(x) and τ(xy) = τ(yx).
• ρA is the natural pairing of Tr(A) and K0(A).

• The form of the Elliott conjecture which states that the Elliott
invariant classifies all simple, separable, infinite-dimensional,
unital nuclear algebras is false - there are counter-examples of
different types with the first ones due to Toms and separately
Rørdam.

• A search is on for a new invariant which might classify nuclear
algebras.
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Prototypical example of classification

Theorem (Elliott)
The class of AF algebras can be classified by K0.

Let’s do a special case of this result due to Glimm.

Definition
For a UHF algebra A = limk Mn(k), let the GI(A), the generalized
integer of A be the function which assigns to every prime p the
supremum of all n such that pn divides n(k) for some k ; this can be
infinite.

Theorem (Glimm)
If A and B are separable, unital UHF algebras then A ∼= B iff
GI(A) = GI(B).
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A proof of Glimm’s theorem

Sketch of proof: One checks that UHF algebras have a unique trace
and the values of this trace on a UHF algebra A are of the form
{k/n : k |GI(A)}.

Now if GI(A) = GI(B) then we can arrange in a back and forth
fashion that A = limk Mn(k) and B = limk Mm(k) such that for all k ,
n(k)|m(k)|n(k + 1). It is possible then to create a sequence of maps
ϕk : Mn(k) → Mm(k) and ψk : Mm(k) → Mn(k+1) which additionally have
the necessary commutation to make A and B isomorphic.

Mn(1)(C) Mn(2)(C) Mn(3)(C) . . . A

Mm(1)(C) Mm(2)(C) Mm(3)(C) . . . B

φ1 φ2 φ3ψ1 ψ2
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Model theoretic version of the Elliott conjecture

Simple, separable, infinite-dimensional, unital nuclear
algebras are classified by their Elliott invariant and their
first order continuous theory.



K0(A) vs. Th(A), round 1

• In the case of a separable, unital UHF algebra A, K0(A) is a rank
1, torsion-free abelian group where we have specified a
constant. This is determined by GI(A) by Glimm’s theorem.

• Equivalently, the theory knows the generalized integer for a
separable, unital UHF algebra A = limk Mm(k). In fact, Mn
embeds into A iff n divides n(k) for some k .

• Round 1 - a draw.
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K0(A) vs. Th(A), round 2

• A classical result of Dixmier which generalizes Glimm’s theorem
shows that non-unital separable UHF algebras are classified by
K0.

• In this case, K0 is an arbitrary rank 1, torsion-free abelian group.
• The isomorphism relation for such groups is known not to be

smooth in the sense of Borel equivalence relations.
• The theory of a C*-algebra is a smooth invariant and so Dixmier’s

result shows that K0 and not the theory captures isomorphism at
least for non-unital separable UHF algebras.

• Advantage K0 (and descriptive set theory).
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K-theory vs. Th(A), round 3

• The most general counter-examples to the form of the Elliott
conjecture which says that Ell(A) is a sufficient invariant are due
to Toms, Annals of Math, 2008.

• He gave continuum many simple separable nuclear C*-algebras
with identical Elliott invariant that were not isomorphic.

• He used something called the Cuntz semigroup to show they
were not isomorphic and in particular computed a number called
the radius of comparison - it was this value that differentiated the
algebras.

• In joint work with Leonel Robert, we showed that the radius of
comparison is known to the theory of an algebra - it is preserved
under ultraproducts and elementary submodels.

• Advantage Th(A).
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Traces matter

• Nuclear algebras do not form an elementary class but it is
interesting to consider the theory of nuclear algebras.

• Question: is every C*-algebra elementarily equivalent to a
nuclear algebra?

• No. Let A =
∏
n∈N

Mn(C)/U where U is a non-principal ultrafilter on

N.
• We need some facts about A: A has a trace and it is definable

say by a formula ϕ.
• Now suppose that A ≡ B where B is some simple, separable,

nuclear algebra.
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Traces matter, cont’d

• But then ϕ would define a trace on B which would mean that the
associated von Neumann algebra is the hyperfinite II1 factor R.

• In earlier work with Farah and Sherman we showed that a
property identified by von Neumann called property Γ for tracial
von Neumann algebras was elementary.

• It is known that R satisfies property Γ and that A modulo its trace
does not so A 6≡ B.

• Question: what is the theory of the class of nuclear algebras? Is
it the theory of C*-algebras?
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