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Solutions of diophantine equations that come from “small” groups
are subject to strong restrictions.

32 − 23 = 1

is the only solution of
x − y = 1

with x ∈ 〈3〉 ⊂ C× and y ∈ 〈2〉 ⊂ C×.
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Lang’s Conjecture and Beyond

From a qualitative point of view, and after work of Bombieri,
Faltings, Hindry, Hrushovski, Lang, Liardet, McQuillen, Votja, ...
intersections

X ∩ Γ

where X is a subvariety of a semi-abelian variety and Γ is a finitely
generated subgroup are well-understood.

The semi-abelian varieties include (C×)n, abelian varieties,
products of such, and more.
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Zilber-Pink

We will restrict to the ambient group (C×)n, also known as the
algebraic torus.
In this context, the Zilber-Pink Conjecture (or CIT) deals with the
intersection of X with an algebraic subgroup H ⊂ (C×)n.

Remark
Any algebraic subgroups of (C×)n is defined by

xa11
1 · · · xa1n

n = 1
...

xam1
1 · · · xamn

n = 1

 with (aij) ∈ Z.



Zilber-Pink cont’d

Conjecture (Variant of Zilber-Pink for the algebraic torus)

Let X be an irreducible subvariety of (C×)n.There are finitely
many proper algebraic subgroups H1, . . . ,Hr ( (C×)n with

X ∩
⋃

dimH<n−dimX

H ⊂ H1 ∪ · · · ∪ Hr .

Here H runs over algebraic subgroups of (C×)n.

Zilber expects additional uniformity for subvarieties X of fixed
degree.
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Some Known Cases

X 6⊂ proper algebraic subgroup + ZP
⇓

X ∩
⋃

dimH<n−dimX H is not Zariski dense in X .

Only a few non-trivial cases are known: If

I (Maurin ’08/Q and Bombieri-Masser-Zannier ’08/C) X is a
curve and the subgroups H have dimension n − 2

I (Bombieri-H.-Masser-Zannier ’10) Effective version for
curves/Q

I (Bombieri-Masser-Zannier ’07) X has codimension 2, and the
H have dimension 1

I (The classical Manin-Mumford Conjecture) X has
codimension 1 and the subgroups H are finite.
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Further partial results I

Only partial results are known if X ⊂ (C×)n is of “intermediate”
dimension.

(H. ’09, generalized by Maurin ’11) If

I X is defined over Q, and

I if X is non-degenerate, i.e.

∀ surjective ϕ : (C×)n � (C×)dimX : dimϕ(X ) = dim X

then X ∩
⋃
···H is not Zariski dense in X .

These results are “pre Pila-Wilkie”: there proofs rely on
height-theoretic methods and (often) Ax’s Theorem.
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Degenerate Varieties

X is degenerate if

∃ surjective ϕ : (C×)n � (C×)dimX : dimϕ(X ) < dim X .

A “random” variety of fixed degree is non-degenerate. But many
natural examples are degenerate.

Example

Take an algebraic curve C ⊂ (C×)n with n ≥ 2. The surface

C × C ⊂ (C×)2n

is degenerate as ϕ(C × C ) = C is a curve with

ϕ : (C×)2n → (C×)n

the projection onto the first n coordinates.
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Further partial results II

Theorem (Bays, Ph.D. thesis of ’09)

Say X is defined over R and let t 7→ H(t) be a 1-parameter
polynomial family of algebraic subgroups. There is a finite
collection of proper algebraic subgroups H1, . . . ,Hr ( (C×)n with

X (R) ∩
⋃
t∈Z

dimH(t)<n−dim X

H(t) ⊂ H1 ∪ · · · ∪ Hr .

The family H(t) is defined by

x
ai1(k)
1 · · · xain(t)

n = 1 (1 ≤ i ≤ m)

with each aij ∈ Z[T ].
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Further partial results II cont’d

Bays also treated s-parameter polynomial families of algebraic
subgroups

(t1, . . . , ts) 7→ H(t1, . . . , ts) ⊂ (C×)n.

However, his result restricts to parameters

(t1, . . . , ts) ∈ Zs r E

with E definable in Rexp and dim E < s.
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A Question of Aaron Levin

Question
Suppose that C1 and C2 are curves in (C×)n. What can be said
about the points x ∈ C1 such that some power x t (t ≥ 2) lies in
C2?

These points produce

(x , x t) ∈ C1 × C2 in H(t) = {(x , y); y = x t} ⊂ (C×)2n.

Note that C1 × C2 is degenerate and

dimH(t) = n < 2n − dim C1 × C2 = 2n − 2 if n ≥ 3.

As t →∞ the subgroup Ht “approaches” the kernel of the
projection (C×)2n → (C×)n which is responsible for degeneracy.
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Even this question is out of reach for now ...

... we restrict to C = C1 = C2

Theorem (Bays, H.)

Suppose C ⊂ (C×)n is defined over Q and not contained in a
proper algebraic subgroup. If n ≥ 3,

T = S1 × · · · × S1 ⊂ (C×)n and C ∩ T is finite

there are only finitely many x ∈ C with x t ∈ C for some t ≥ 2.

Finiteness C ∩ T is not believed to be necessary.
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Remarks on C ∩ T

I If C is the curve given by xayb = 1 with a, b ∈ Z, then C is a
subgroup and #C ∩ T =∞.

I If C is a line in general position, then C ∩ T is finite. For
example C given by x + y = 1:

0 1

ζ6

ζ6
-1

I But, if |x | = 1 then
∣∣∣ x−22x−1

∣∣∣ = 1, so
{

(x , x−2
2x−1)

}
∩ T is infinite.

Many more examples can be constructed using Blaschke
products.
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The General Strategy

We use the basic strategy developed by Zannier to use the
Pila-Wilkie Theorem describing the distribution rational points on
sets definable in an o-minimal structure.

Suppose (for simplicity) that C ⊂ (C×)3 is defined over Q.
Let x ∈ C have infinite order with x t ∈ C for some t ≥ 2.

I Construct an integral point kx in some set definable Z in
Ran,exp.
If σ ∈ Gal(Q/Q) then σx ∈ C and σx t ∈ C .
Number of integral kσx on Z is � [Q(x) : Q].

I Apply Pila-Wilkie and use Ax’s functional Schanuel to deduce
a contradiction if [Q(x) : Q] ≥ t1/7 and t is large.

I Use results from transcendence theory and heights to prove
[Q(x) : Q] ≥ t1/7.
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Constructing Z and Integral Points

We have x ∈ C and x t ∈ C .
Let F = (R + i [0, 2π))3 be a fundamental domain of the
exponential function.

Fix z ∈ F with exp(z) = x and kx ∈ Z3 with

tz − 2πikx ∈ F .

We want to count the kx ∈ Z3. They live on the set

Zt = {k ∈ R3; ∃z ∈ F ∩ exp−1(C )

with tz − 2πik ∈ F ∩ exp−1(C )}

definable in Ran,exp. We think of Zt as a definable family
parametrized over R by t.
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Applying Pila-Wilkie

Theorem (Pila-Wilkie ’06)

Let Z ⊂ Rn be definable in an o-minimal structure. For ε > 0
there is a constant c = c(Z, ε) such that

#
{

k ∈ (Z r Zalg) ∩Qn; H(k) ≤ T
}
≤ cT ε

for all T ≥ 1. Here Zalg is the union of all semi-algebraic,
connected curves in Z. Moreover, c(Z, ε) is uniform over definable
families.

Uniformity in o-minimality implies #{kσx} � [Q(x) : Q].
The height H(k) of k ∈ Z3 is the sup-norm of k. So H(kσx) ≤ t.
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Applying Pila-Wilkie cont’d

If t is large and if [Q(x) : Q] ≥ t1/7 then Pila-Wilkie (with any
fixed ε < 1/7) implies

kσx ∈ Zt
alg

for some σ.
Ax’s functional Schanuel implies Zt = ∅ and thus a contraditon.
But how?

Recall

Zt = {k ∈ R3; ∃z ∈ F ∩ exp−1(C )

with tz − 2πik ∈ F ∩ exp−1(C )}

We get a semi-algebraic curve parametrized by s 7→ k(s). Then

exp(2πik(s)) ∈ ϕ(C × C ) with ϕ(x , y) = x ty−1.
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Applying Ax’s Theorem

. . . exp(2πik(s)) lies on the surface ϕ(C × C )

Now trdegCC(k(s)) ≤ 1 and trdegCC(exp(2πik(s))) ≤ 2. So

trdegCC(k(s), exp(2πik(s))) ≤ 3 < n + 1.

Ax’s functional Schanuel and n ≥ 3 imply that the components of
k(s) are Z-linearly dependent.

=⇒ C is contained in the translate of a proper algebraic subgroup
of (C×)3. This easily contradicts our hypothesis.
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Bounding the Height

We have completed steps 1 and 2 in the strategy. It remains to
show

[Q(x) : Q] ≥ t1/7

for large t. This will require 2 powerful results from transcendence
theory.

Rémond proved a “Vojta height inequality” for subvarieties of the
algebraic torus. An easy corollary is:
There exists B independent of x and t such that the absolute Weil
height satisfies

h(x) ≤ B.

Recall: (Northcott) There are only finitely points of bounded
height and bounded degree over Q.
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Bounded Height and Non-clustering

Theorem (Bilu ’97)

Let x1, x2, . . . ∈ (Q×)n be a sequence with limi→∞ h(xi ) = 0 such
that each proper algebraic subgroup of (C×)n contains at most
finitely many xi . Then {σ(xi ); σ : Q→ C} “become
equidistributed” around T for i →∞.

We cannot apply this theorem to our points x . Instead we use:

Proposition

Let Σ ⊂ (C×)n be a finite set. Suppose x1, x2, . . . ∈ (Q×)n is a
sequence of distinct points with h(xi ) ≤ B. The conjugates of xi
do not “cluster around” Σ: there is ε > 0 such that for all large i

dist(σ(xi ),Σ) ≥ ε for some σ ∈ Gal(Q/Q).
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Back to x ∈ C and x t ∈ C . After conjugating, x is not too close
to C ∩ T:

Figure: Black dots represent elements of T ∩ C

Without loss of generality x = (x1, x2, x3) satisfies maxi log |xi | ≥ ε.
Then x t is close to a pole of a coordinate function. Expaning a
coordinate function as a Puiseux series in another coordinate gives

x tα
1 ≈ cx tβ

2

for some (α, β) ∈ Z2 r {0} and a constant c ∈ Q×.
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Baker’s Theorem

To be precisely, we obtain

|x tα
1 x−tβ2 − c | ≤ exp(−(cnst.)t).

This is an exceptionally good approximating. If the absolute value
is non-zero, then a theorem of Baker implies

exp(−(cnst.)[Q(x) : Q]6(1 + h(x))2log t) ≤ |x tα
1 x−tβ2 − c|.

Since h(x) ≤ B and because exponential always beats polynomial
we get

[Q(x) : Q] ≥ t1/7

for large t.
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Knowing a height bound imposes a condition on all valuations
(infinite and finite) of a point.
There’s a p-adic version of Baker’s Theorem due to Kunrui Yu. It
allows us to drop the condition on C ∩ T (at a price).
We obtain

Theorem (Bays+H.)

Let C ⊂ (C×)n be defined over Q and n ≥ 3. Suppose C is not
contained in a proper algebraic subgroup of (C×)n. There exists p0
such that there are only finitely many

x ∈ C with x t ∈ C for some t ≥ 2

with are integral with respect to a fixed, finite set of primes ≥ p0.



Open Question

Say R ⊂ T ⊂ (C×)3 is a real algebraic curve not contained in a
proper subgroup of T. Are there only finitely many x ∈ R with
x t ∈ R for some t ≥ 2?



Thanks for your attention!
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