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F¥-2=1

is the only solution of
x—y=1

with x € (3) C C* and y € (2) C C*.
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Lang's Conjecture and Beyond

From a qualitative point of view, and after work of Bombieri,
Faltings, Hindry, Hrushovski, Lang, Liardet, McQuillen, Votja, ...
intersections

Xnr

where X is a subvariety of a semi-abelian variety and [ is a finitely
generated subgroup are well-understood.

The semi-abelian varieties include (C*)", abelian varieties,
products of such, and more.



Zilber-Pink

We will restrict to the ambient group (C*)", also known as the
algebraic torus.

In this context, the Zilber-Pink Conjecture (or CIT) deals with the
intersection of X with an algebraic subgroup H C (C*)".

Remark
Any algebraic subgroups of (C*)" is defined by

a1l ai —
X] xgn =1

with (aj) € Z.
am1

X]. “ .. Xﬁmn f— 1



Zilber-Pink cont'd

Conjecture (Variant of Zilber-Pink for the algebraic torus)

Let X be an irreducible subvariety of (C*)". There are finitely
many proper algebraic subgroups Hi,...,H, C (C*)" with

XN U HCHL U UH,.
dimH<n—dim X

Here H runs over algebraic subgroups of (C*)".
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Conjecture (Variant of Zilber-Pink for the algebraic torus)

Let X be an irreducible subvariety of (C*)". There are finitely
many proper algebraic subgroups Hi,...,H, C (C*)" with

XN U HCHL U UH,.
dimH<n—dim X

Here H runs over algebraic subgroups of (C*)".

Zilber expects additional uniformity for subvarieties X of fixed
degree.
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Some Known Cases

X ¢ proper algebraic subgroup + ZP
4

X OV Udim 2<n—dimx H s not Zariski dense in X.

Only a few non-trivial cases are known: If

» (Maurin '08/Q and Bombieri-Masser-Zannier '08/C) X is a
curve and the subgroups H have dimension n — 2

» (Bombieri-H.-Masser-Zannier '10) Effective version for
curves/Q

» (Bombieri-Masser-Zannier '07) X has codimension 2, and the
‘H have dimension 1

» (The classical Manin-Mumford Conjecture) X has
codimension 1 and the subgroups H are finite.
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Further partial results |

Only partial results are known if X C (C*)" is of “intermediate”

dimension.
(H. '09, generalized by Maurin '11) If

» X is defined over Q, and

» if X is non-degenerate, i.e.
¥ surjective ¢ : (C*)" — (C*)4mX . dim p(X) = dim X

then X N J... H is not Zariski dense in X.
These results are “pre Pila-Wilkie": there proofs rely on
height-theoretic methods and (often) Ax’s Theorem.
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Degenerate Varieties

X is degenerate if
3 surjective @ : (CX)™ — (C*)4mMX . dim o(X) < dim X.

A “random” variety of fixed degree is non-degenerate. But many
natural examples are degenerate.

Example
Take an algebraic curve C C (C*)" with n > 2. The surface

Cx Cc(Cr)en
is degenerate as p(C x C) = C is a curve with
o (€)= (C)

the projection onto the first n coordinates.



Further partial results Il

Theorem (Bays, Ph.D. thesis of '09)
Say X is defined over R and let t — H(t) be a 1-parameter

polynomial family of algebraic subgroups. There is a finite
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Further partial results Il

Theorem (Bays, Ph.D. thesis of '09)

Say X is defined over R and let t — H(t) be a 1-parameter
polynomial family of algebraic subgroups. There is a finite
collection of proper algebraic subgroups Hi,...,H, C (C*)" with

X(R) N U #HOcHiu- U,

teEZL
dim H(t)<n—dim X

The family #(t) is defined by
Xlail(k) .. _X;':in(t) =1 (1<i<m)

with each a;; € Z[T].
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Further partial results Il cont'd

Bays also treated s-parameter polynomial families of algebraic
subgroups

(t1,...,ts) — H(tr,..., ts) C (C)".
However, his result restricts to parameters
(t1,...,ts) € Z° N E

with E definable in Reyp, and dim E < s.
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A Question of Aaron Levin

Question
Suppose that C; and C, are curves in (C*)". What can be said

about the points x € C; such that some power x* (t > 2) lies in
G

These points produce

(x,x') € Gt x Gy in H(t) ={(x,y); y =x'} C (C*)*.

Note that C; x C, is degenerate and
dmH(t)=n<2n—dimCG x G =2n—-2 if n>3.

As t — oo the subgroup H;: “approaches” the kernel of the
projection (C*)2" — (C*)" which is responsible for degeneracy.
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Theorem (Bays, H.)

Suppose C C (C*)" is defined over Q and not contained in a
proper algebraic subgroup. If n > 3,

T=S'x..-xS'c(C" and CNT is finite

there are only finitely many x € C with x* € C for some t > 2.



Even this question is out of reach for now ...
.. werestrictto C=C =G

Theorem (Bays, H.)

Suppose C C (C*)" is defined over Q and not contained in a
proper algebraic subgroup. If n > 3,

T=S'x..-xS'c(C" and CNT is finite

there are only finitely many x € C with x* € C for some t > 2.

Finiteness C N'T is not believed to be necessary.
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Remarks on CNT

» If C is the curve given by x?y? =1 with a,b € Z, then C is a
subgroup and #CNT = .

» If C is a line in general position, then C N T is finite. For
example C given by x + y = 1:

G
%
» But, if [x| =1 then 2);21‘ =1, so {( Xy 7 1)} NT is infinite.

Many more examples can be constructed using Blaschke
products.
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The General Strategy

We use the basic strategy developed by Zannier to use the
Pila-Wilkie Theorem describing the distribution rational points on
sets definable in an o-minimal structure.

Suppose (for simplicity) that C C (C*)3 is defined over Q.

Let x € C have infinite order with x* € C for some t > 2.

» Construct an integral point ky in some set definable Z in

Ran,exp-
If o € Gal(Q/Q) then ox € C and ox! € C.
Number of integral k,» on Z is > [Q(x) : Q).

» Apply Pila-Wilkie and use Ax’s functional Schanuel to deduce
a contradiction if [Q(x) : Q] > t¥/7 and t is large.

> Use results from transcendence theory and heights to prove

[Q(x) : Q] > t1/7,
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Constructing Z and Integral Points

We have x € C and xt € C.

Let F = (R +i[0,27))3 be a fundamental domain of the
exponential function.
Fix z € F with exp(z) = x and k, € Z3 with

tz — 2wiky € F.
We want to count the k, € Z3. They live on the set

Z,={keR% 3ze Fnexp }(C)
with tz — 2wik € F Nexp 1(C)}

definable in Ry exp. We think of Z; as a definable family
parametrized over R by t.



Applying Pila-Wilkie

Theorem (Pila-Wilkie '06)
Let Z C R" be definable in an o-minimal structure. For e > 0
there is a constant ¢ = ¢(Z,€) such that

4 {k € (2~ 298)NQ"; H(k) < T} < cTe
for all T > 1. Here Z8 s the union of all semi-algebraic,

connected curves in Z. Moreover, c(Z,¢€) is uniform over definable
families.



Applying Pila-Wilkie

Theorem (Pila-Wilkie '06)
Let Z C R" be definable in an o-minimal structure. For e > 0
there is a constant ¢ = ¢(Z,€) such that

4 {k € (2~ 2Y8)NQ"; H(k) < T} < T

for all T > 1. Here Z8 s the union of all semi-algebraic,
connected curves in Z. Moreover, c(Z,¢€) is uniform over definable
families.

Uniformity in o-minimality implies #{k,x} > [Q(x) : Q].

The height H(k) of k € Z3 is the sup-norm of k. So H(k,x) < t.
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Applying Pila-Wilkie cont'd

If t is large and if [Q(x) : Q] > t1/7 then Pila-Wilkie (with any
fixed € < 1/7) implies

kcrx € Ztalg
for some o.
Ax's functional Schanuel implies Z; = () and thus a contraditon.
But how?
Recall

Z,={keR3 3z Fnexp }(C)
with tz — 2mik € F Nexp 1(C)}
We get a semi-algebraic curve parametrized by s — k(s). Then

exp(27ik(s)) € o(C x C) with o(x,y) = xty L.



Applying Ax's Theorem

exp(2mik(s)) lies on the surface p(C x C)
Now trdeg-C(k(s)) <1 and trdegcC(exp(2mik(s))) < 2. So

trdegcC(k(s), exp(2mik(s))) <3 < n+1.

Ax’s functional Schanuel and n > 3 imply that the components of
k(s) are Z-linearly dependent.



Applying Ax's Theorem

exp(2mik(s)) lies on the surface p(C x C)
Now trdeg-C(k(s)) <1 and trdegcC(exp(2mik(s))) < 2. So

trdegcC(k(s), exp(2mik(s))) <3 < n+1.

Ax’s functional Schanuel and n > 3 imply that the components of
k(s) are Z-linearly dependent.

= C is contained in the translate of a proper algebraic subgroup
of (C*)3. This easily contradicts our hypothesis.
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Bounding the Height

We have completed steps 1 and 2 in the strategy. It remains to
show

[Q(x) : Q] > ¢1/7

for large t. This will require 2 powerful results from transcendence
theory.
Rémond proved a “Vojta height inequality” for subvarieties of the
algebraic torus. An easy corollary is:
There exists B independent of x and t such that the absolute Weil
height satisfies

h(x) < B.

Recall: (Northcott) There are only finitely points of bounded
height and bounded degree over Q.
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Bounded Height and Non-clustering

Theorem (Bilu '97)

Let x1,x2,... € (Q*)" be a sequence with lim;_, h(x;) = 0 such
that each proper algebraic subgroup of (C*)" contains at most
finitely many x;. Then {o(x;); o :Q — C} “become
equidistributed” around T for i — oc.

We cannot apply this theorem to our points x. Instead we use:

Proposition

Let ¥ C (C*)" be a finite set. Suppose x1,xz,... € (Q*)" is a
sequence of distinct points with h(x;) < B. The conjugates of x;
do not ‘cluster around” ¥X: there is € > 0 such that for all large i

dist(o(x;),X) > € for some o € Gal(Q/Q).



Back to x € C and xt € C. After conjugating, x is not too close
to CNT:

Figure: Black dots represent elements of TN C
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Back to x € C and xt € C. After conjugating, x is not too close
to CNT:

Figure: Black dots represent elements of TN C

Without loss of generality x = (x1, x2, x3) satisfies max; log |x;| > e.
Then x' is close to a pole of a coordinate function. Expaning a
coordinate function as a Puiseux series in another coordinate gives

B

ta t
X[ R CXp

for some (o, 8) € Z2 ~. {0} and a constant c € Q.
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Baker's Theorem

To be precisely, we obtain
Ixfx; P — ¢| < exp(—(cnst.)t).

This is an exceptionally good approximating. If the absolute value
is non-zero, then a theorem of Baker implies

exp(—(cnst.)[Q(x) : QIP(1 + h(x))log t) < [xf¥x; ™ — .

Since h(x) < B and because exponential always beats polynomial
we get

[Q(x): Q] > /7

for large t.



Knowing a height bound imposes a condition on all valuations
(infinite and finite) of a point.

There's a p-adic version of Baker's Theorem due to Kunrui Yu. It
allows us to drop the condition on C N T (at a price).

We obtain

Theorem (Bays+H.)

Let C C (C*)" be defined over Q and n > 3. Suppose C is not
contained in a proper algebraic subgroup of (C*)". There exists py
such that there are only finitely many

xe C with xt € C forsomet>?2

with are integral with respect to a fixed, finite set of primes > py.



Open Question

Say R C T C (C*)3 is a real algebraic curve not contained in a
proper subgroup of T. Are there only finitely many x € R with
x' € R for some t > 27



Thanks for your attention!
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