Introduction

A fundamental dichotomy for definably complete expansions of ordered fields

Antongiulio Fornasiero antongiulio.fornasiero@gmail.com

Seconda Universitá di Napoli

Model Theory 2013 Ravello Joint work with Philipp Hieronymi.

A definably complete structure is either a model of second order Peano Arithmetic, or it is "tame".

This dichotomy can be used to transfer several theorems from $\ensuremath{\mathbb{R}}$ to DC structures.

A. Fornasiero (Seconda Universitá di Napoli)	Dichotomy for DC fields	Ravello 2013	0 / 13	A. Fornasiero (Seconda Universitá di Napoli) Dichotomy for DC field	IS Ravello 2013	1 / 13			
	Introduction			The dichotomy					
Contents			Hieronymi's dichotomy						
				Let ${\mathfrak R}$ be an expansion of the ordered fi	eld R.				
1 The dichotomy				Theorem (Hieronymi '10) Only 2 cases are possible:					
 Applications Baire's Category T Lebesgue's Differe 	heorem ntiation Theorem			Restrained case: either, for every defi and every definable function nowhere dense in \mathbb{R} ;	hable discrete set $D \subset \mathbb{R}^n$ n f : $D \to \mathbb{R}$, f(D) is	ו			
 3 The proof 4 Conclusion 				Unrestrained case: or \mathbb{Z} is definable in \Re .					
				Proposition					
				In the restrained case, if $f : \mathbb{R}^n \to \mathbb{R}$ is a definable continuous function, then f is differentiable outside a nowhere dense set (or, equivalently, outside a closed set of measure 0).					

Definably complete structures

Definition

Let $\mathbb{K} = \langle K, <, ... \rangle$ be a (linearly) ordered structure. \mathbb{K} is **definably complete** (DC) if every definable subset $X \subseteq K$ has a least upper bound in $K \cup \{\pm \infty\}$.

Examples

- Any expansion of \mathbb{R} is DC.
- Any o-minimal structure is DC.
- The ordered field of rational numbers is not DC.

Dichotomy for DC fields

Ravello 2013 3 / 13

The dichotomy

Examples

 $\overline{\mathbb{R}} := \langle \mathbb{R}, +, \cdot, <, 0, 1 \rangle.$

Restrained structures:

- O-minimal structures;
- Locally o-minimal structures;
 e.g., ultraproducts of o-minimal structures;
- D-minimal structures; e.g., $\langle \overline{\mathbb{R}}, 2^{\mathbb{Z}} \rangle$ (Dries '85)
- Dense elementary pairs of o-minimal (more generally, d-minimal) structures;
 - e.g., $\langle \overline{\mathbb{R}}, 2^{\mathbb{Z}}, \mathbb{R}^{alg} \rangle$.

Unrestrained structures:

- $\langle \overline{\mathbb{R}}, \mathbb{Z} \rangle;$
- $\langle \overline{\mathbb{R}}, 2^{\mathbb{Z}}, 3^{\mathbb{Z}} \rangle$ (Hieronymi '10);
- $\langle \overline{\mathbb{R}}, C \rangle$, where $C \subseteq \mathbb{R}^n$ is any closed set with non-integer Hausdorff dimension.

5/13

Dichotomy in DC fields Let $\mathbb{K} = \langle K, <, +, \cdot, ... \rangle$ be a DC expansion of an ordered field.

Theorem

Only 2 cases are possible:

- **Restrained case:** either, for every definable discrete set $D \subset K^n$ and every definable function $f : D \to K$, f(D) is nowhere dense in K;
- **Unrestrained case:** or a (unique) discrete subring Z is definable in \mathbb{K} .

Proposition

In the restrained case, if $f : K^n \to K$ is a definable continuous function, then f is differentiable outside a nowhere dense set.

A. Fornasiero (Seconda Universitá di Napoli)

Dichotomy for DC fields

Ravello 2013 4 / 13

The dichotomy

Models of arithmetic

Assume that \mathbb{K} defines a discrete subring *Z*; let $N := Z_{\geq 0}$. Since every definable subset of *N* has a minimum, *N* is a model of Peano arithmetic.

We can encode definable functions from N to N as elements of K (like in the real case, where we can use the continuous fraction expansion of a real number to encode sequences of natural numbers).

Therefore, *N* is a model of **second-order Peano arithmetic**.

We can also encode definable functions from N to K as elements of K (like in the real case, where we can encode a sequence of real numbers as a single real number).

Lemma

The family of definable functions from N to K is a **definable** family.

Application 1: Category Theory Definition

 $X \subseteq \mathbb{K}$ is definably meager if

$$X = \bigcup_{t \in \mathcal{U}} X_t,$$

where $(X_t : t \in K)$ is a definable increasing family of nowhere dense subsets of K.

Theorem (Hieronymi '13)

𝔣 is not definably meager. 𝔅

Proof.

If \mathbb{K} is unrestrained, we can transfer the proof of the usual Baire Category Theorem.

If \mathbb{K} is restrained, every definably meager subset of K is nowhere dense. 7/13 A. Fornasiero (Seconda Universitá di Napoli) Dichotomy for DC fields Ravello 2013

> Applications Lebesgue's Differentiation Theorem

Lebesgue's Differentiation Theorem

Theorem (Miller's Conjecture)

Let $f: K \to K$ be a definable monotonic function. Then, f is differentiable on a dense subset of K.

Proof.

If \mathbb{K} is restrained, then f is continuous on an open dense set. For every definable continuous function f, f is differentiable on an open dense set.

If \mathbb{K} is unrestrained, then f is differentiable outside a set of definable measure zero. П

Application 2: Measure Theory

Assume that \mathbb{K} is unrestrained and $N := Z_{>0}$. Given $a < b \in K$, let |(a, b)| := b - a. Let $\mathfrak{A} := (A_i : i \in N)$ be a definable family of intervals: define

$$M(\mathfrak{A}) := \sum_{i \in N} |A_i|$$

(I.e., there exists a unique definable function $f: N \to K_{>0}$ such that f(0) = 0 and $f(n + 1) = f(n) + |A_n|$. Define $M(\mathfrak{A}) := \sup_n f(n)$).

Given $X \subseteq K$ definable set. let the definable measure of X be

 $\mu^*(X) := \inf \{ M(\mathfrak{A}) : \mathfrak{A} \text{ definable family of intervals covering } X \}.$

 μ^* is the definable analogue of the (outer) Lebesgue measure.

A. Fornasiero (Seconda Universitá di Napoli)

Dichotomy for DC fields

Ravello 2013

8/13

The proof

Sketch of proof of the Dichotomy

Theorem

Let $D \subset K_{>0}$ be a definable, closed, unbounded, and discrete set and $f: D \rightarrow K$ be a definable function. If f(D) is dense in K, then K defines a discrete subring.

Definition

Let $D \subset K_{>0}$ be a definable, closed, discrete set. For every $a \in D$, define $s_D(a)$ to be the **successor** of a in D. We say that D has step 1 if, for every $a \in D$ not the maximum, $s_{D}(a) = a + 1.$ D is a **natural fragment** if it has step 1 and min(D) = 0.

Remark

Assume that $N \subset K$ is an unbounded natural fragment. Then, N is the positive part of a discrete subring of K.

The proof

Asymptotic extraction

Let $\mathfrak{A} := (A_i : i \in I)$ be a definable family of closed discrete subset of $K_{\geq 0}$.

Definition

A. Fornasiero (Seconda Universitá di Napoli)

 $a \in K$ is in the **natural fragment extracted from** \mathfrak{A} if: for every $\varepsilon > 0$ there exists $i \in I$ such that:

$$egin{aligned} & d(A_i,0) < arepsilon; \ & d(A_i,a) < arepsilon; \ & dd \in A_i \quad |s_{A_i}(d) - d - 1| < arepsilon. \end{aligned}$$

The natural fragment extracted from \mathfrak{A} is indeed a natural fragment.

Dichotomy for DC fields

Proof

A. Fornasiero (Seconda Universitá di Napoli)

Let $f : D \to K$ be definable, with $D \subset K_{>0}$ closed, discrete, and unbounded, and f(D) dense in K. Then, there exists a definable family

$$\mathfrak{Y} = (Y_{s,t,d} : s, t \in K, d \in D)$$

of closed, discrete, and bounded subsets of K, such that the natural fragment extracted from \mathfrak{Y} is unbounded.

Dichotomy for DC fields

Ravello 2013

12/13

More generally, for every $\varepsilon > 0$ and $X \subset K_{\geq 0}$ definable, closed, discrete, and bounded, there exist (s, t, d), such that $d(Y_{s,t,d}, X) < \varepsilon$.

	·		
Conclusion			
Open problems			
Brouwer's Fixed Point Theorem Let $f : [0, 1]^2 \rightarrow [0, 1]^2$ be a continuous definable function.			

Does f have a fixed point?

Pigeon Hole Principle Let $D \subset K$ be definable, closed, discrete, and bounded. Let $f : D \rightarrow D$ be definable and injective. Is *f* surjective?

In both case, answer is "YES" if $\ensuremath{\mathbb{K}}$ is either unrestrained or o-minimal.

A. Fornasiero and P. Hieronymi.
 A fundamental dichotomy for definably complete expansions of ordered fields. 16 pp. (2013).
 ArXiv:1305.4767v1

Ravello 2013

11 / 13