A non-compact version of Pillay's conjecture

Annalisa Conversano

Institute of Natural and Mathematical Sciences Massey University, Auckland (New Zealand)

Ravello 2013

- $1. \ \mbox{Pillay's conjecture}$ and related work
- 2. The non-compact case
- 3. Valued groups and model theory

★ 문 → < 문 →</p>

æ

Given $\mathcal{M} = \langle M, <, +, \cdot \rangle$ a \aleph_1 -saturated rcf, we can define a definably compact group $G = ([0, 1[, \oplus)$

$$x \oplus y = \begin{cases} x+y & \text{if } x+y < 1 \\ x+y-1 & \text{otherwise.} \end{cases}$$

the standard part map is a surjective homomorphism

$$st \colon [0,1[^M \to [0,1[^{\mathbb{R}}$$

ker $st = \bigcap_{n \in \mathbb{N}} [0, \frac{1}{n}[\cup]1 - \frac{1}{n}, 1[$ is the subgroup of the infinitesimals of G. G/ ker st is isomorphic to the circle (1-dimensional torus).

伺 とう ヨン うちょう

Pillay's conjecture

Let G be a group definable in a (sufficiently saturated) o-minimal structure \mathcal{M} . Then

- 1. \exists a smallest type-definable subgroup of bounded index G^{00} .
- 2. With the logic topology G/G^{00} is a compact real Lie group.
- 3. G is definably compact $\Rightarrow \dim_{\mathcal{M}} G = \dim_{\mathbb{R}} G/G^{00}$.
- 4. G is abelian \Rightarrow G⁰⁰ is divisible and torsion-free.

Logic topology

 $X \subset G/G^{00}$ is closed $\Leftrightarrow \pi^{-1}(X) \subset G$ is type-definable, where $\pi \colon G \to G/G^{00}$ is the canonical projection.

Theorem (Pillay 2004)

PC holds when dim G = 1 and when G is definably simple.

Theorem (Berarducci - Otero - Peterzil - Pillay 2005)

Every group definable in an o-minimal structure has the DCC on type-definable subgroups of bounded index.

Theorem (Hrushovski - Peterzil - Pillay 2008 (fields), Eleftheriou 2008 (linear), Peterzil 2009 (groups), Edmundo - Terzo 2008 (orientable))

G is definably compact $\Rightarrow \dim_{\mathcal{M}} G = \dim_{\mathbb{R}} G/G^{00}$.

Theorem (Berarducci 07, Baro 09, Berarducci - Mamino 09) The functor $G \mapsto G/G^{00}$ is exact and preserves the homotopy type.

Theorem (Hrushovski - Peterzil - Pillay, 2010)

There is an elementary embedding $\sigma: G/G^{00} \rightarrow G$ which is a section for the canonical projection $\pi: G \rightarrow G/G^{00}$, and therefore

$$\langle G, \cdot \rangle \equiv \langle G/G^{00}, \cdot \rangle$$

Theorem (Eleftheriou 2009, Hrushovski - Peterzil - Pillay 2010) G is compactly dominated by G/G^{00} , i.e. the set

$$\{c\in G/G^{00}\mid \pi^{-1}(c)\cap X
eq \emptyset \ \land \ \pi^{-1}(c)\cap (G\setminus X)
eq \emptyset\}$$

has Haar measure equal to 0 for every definable $X \subset G$.

→ 米屋→ 米屋→ 一屋

Theorem (Peterzil - Steinhorn 1999)

If G is not definably compact then contains a definable 1-dimensional torsion-free subgroup H.

- Theorem (Pillay 2004)
- H as above \Rightarrow $H = H^{00}$.
- Theorem (C-Pillay 2012)
- H definable torsion-free \Rightarrow H = H⁰⁰.

Theorem (Pillay 2004)

G non-definably compact and definably simple $\Rightarrow G = G^{00}$.

Let ${\mathcal M}$ be a sufficiently saturated o-minimal expansion of a rcf

- G = any connected linear group of triangular matrices = G⁰⁰.
 G = SL_n(M) = SL_n(M)⁰⁰.
- 3. (C Pillay 2012) $G = SO_2(M) \times_{\mathbb{Z}} \widetilde{SL}_2(M) = G^{00}$.

伺下 イヨト イヨト

3

Theorem (C - Pillay 2012)

Let G be a definably connected group. G contains a maximal normal definable torsion-free subgroup $\mathcal{N}(G)$, and $G/\mathcal{N}(G) = K \cdot H$, where K is definably compact and H is torsion-free.

In general G/G^{00} is a proper quotient of K/K^{00} , and $G/G^{00} = K/K^{00} \iff G/\mathcal{N}(G)$ is definably compact.

ヨット イヨット イヨッ

Is there a non-compact version of Pillay's conjecture?

Namely, is there a canonical way to associate a real Lie group L_G to any definable group G, so that first-order, algebraic and geometric properties (such as dimension, torsion structure, homotopy type...) are preserved?

A B K A B K

Let ${\it G}$ be a group and $\Gamma < \infty$ a totally ordered set. A valuation on ${\it G}$ is a map

$$v\colon G\longrightarrow \Gamma\cup\{\infty\}$$

such that

▶
$$v(x) = \infty \iff x = e.$$

▶ $v(xy^{-1}) \ge \min\{v(x), v(y)\}.$

Remark If $v(x) \neq v(y)$ then $v(xy^{-1}) = \min\{v(x), v(y)\}$

向下 イヨト イヨト

æ

Any ordered abelian group (G, <, +) has a natural valuation

$$v\colon \, G \longrightarrow \Gamma \cup \{\infty\}$$

 $v(x) \leq v(y) \iff$ there is $n \in \mathbb{N}$ such that n|x| > |y|. For every $\gamma \in \Gamma$ we set

$$G^{\gamma} := \{ a \in G : v(a) \ge \gamma \}.$$

$$G_{\gamma} := \{ a \in G : v(a) > \gamma \}.$$

And

$$G^{\gamma}/G_{\gamma} = B(\gamma)$$

is called the Archimedean component associated to γ .

通 と く ヨ と く ヨ と

Valued grups and model theory

Let \mathcal{M} be an o-minimal expansion of an ordered group, and v its natural valuation. Then \mathcal{M} is ω -saturated if and only if

- 1. $v(\mathcal{M})$ is a dense linear ordering.
- 2. all Archimedean component are isomorphic to \mathbb{R} .
- 3. every pc-sequence in a substructure of finite dimension has a pseudo-limit in \mathcal{M} .

pc-sequences and pseudo-limits

A well ordered set $\{a_{\rho}\}_{\rho<\lambda}$ is a *pc-sequence* if for every $\rho < \sigma < \tau$ we have $v(a_{\sigma} - a_{\rho}) < v(a_{\tau} - a_{\sigma})$. We say that x is a *pseudo-limit* of $\{a_{\rho}\}_{\rho<\lambda}$ if $\{v(x - a_{\sigma})\}$ is eventually strictly increasing.

A plan (work in progress)

Let G be a definably connected group.

- 1. Find the "intrinsic" notion of convex hull \mathcal{G}_x of $x \in G$.
- 2. Understand for which x there is \mathcal{G}_x^{00} .
- 3. $L_x := \mathcal{G}_x / \mathcal{G}_x^{00}$ with the logic topology is a real Lie group.
- 4. L_x does not depend on x (call it L_G).
- 5. dim $G = \dim L_G$.
- 6. $G = \mathcal{G}_{\chi}$ if and only if G is definably compact.

7.
$$(\langle G, \cdot \rangle \equiv \langle L_G, \cdot \rangle ??)$$

Hopefully

There is a valuation v on G such that

$$\mathcal{G}_x = \{g \in G : v(g) \ge v(x)\}$$
$$\mathcal{G}_x^{00} = \{g \in G : v(g) > v(x)\}$$

So a Lie group would be "the residue" of a "valuation subgroup" in a definable group.