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Growth of groups

Let Γ be a group generated by a finite symmetric set S . The
growth type of Γ is the asymptotics of |Sn| as n→∞.

• For example Gromov’s theorem says that if |Sn| grows at most
polynomially in n, then Γ is virtually nilpotent (= has a nilpotent
subgroup of finite index).
• new proofs by Hrushovski (2009), Breuillard-Green-Tao (2011)
related to new developments on approximate groups involving
model-theoretic ideas...

• If Γ has exponential growth, we may want to consider the rate of
growth:

ρS := lim
n→∞

1

n
log |Sn|
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Growth of groups

When Γ is a linear group we have the following conjecture:

Conjecture (Growth Gap Conjecture)

There is ε = ε(d) > 0 such that for every field K and finite set
S ⊂ GLd(K ), either ρS = 0 and 〈S〉 is virtually nilpotent, or

ρS := lim
n→∞

1

n
log |Sn| > ε.

We know the following:

Theorem (B ’08)

This holds unless 〈S〉 is virtually solvable.

• It also holds if K is of positive characteristic, so the key case is
K = Q.
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Growth of groups

When Γ is a linear group we have the following conjecture:

Conjecture (Growth Gap Conjecture)

There is ε = ε(d) > 0 such that for every field K and finite set
S ⊂ GLd(K ), either ρS = 0 and 〈S〉 is virtually nilpotent, or

ρS := lim
n→∞

1

n
log |Sn| > ε.

• The conjecture reduces to the case when d = 2 and S = S(x) is
as follows:

S(x) := {
(

1 1
0 1

)
,

(
x 0
0 1

)
}

where x ∈ Q is an algebraic unit.
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Growth of groups

S(x) := {
(

1 1
0 1

)
,

(
x 0
0 1

)
}

where x ∈ Q is an algebraic unit.

In fact we have the following inequality:

[Q(x) : Q] · h(x) > ρS(x)

where h(x) is the absolute Weil height of x .

h(x) :=
1

[Q(x) : Q]

∑
v

nv log+ |x |v

In particular, we see that:
The growth gap conjecture implies the Lehmer conjecture.
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Non amenability

Definition (Amenable group)

A discrete group Γ is said to be amenable if there is a sequence
fn ∈ `2(Γ) of unit vectors such that ||γ · fn − fn||`2(Γ) tends to 0 as
n→ +∞.

Examples of

• amenable groups: Zd , solvable groups, finite groups, groups with
sub-exponential growth, etc.

• non amenable groups: free groups (von Neumann), large
Burnside groups (Adian), non virtually solvable subgroups of GLn

(Tits alternative), arithmetic groups in semisimple Lie groups, etc.
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Non amenability

Definition (Amenable group)

A discrete group Γ is said to be amenable if there is a sequence
fn ∈ `2(Γ) of unit vectors such that ||γ · fn − fn||`2(Γ) tends to 0 as
n→ +∞.

• Equivalently, a group Γ is non-amenable if for some (every)
generating set S the associated Kazhdan constant
κS := κ(S , `2(Γ)) is positive.

κS := inf
f ∈`2(Γ)\{0}

{max
s∈S

||π(s)f − f ||
||f ||

} > 0
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Amenability vs. Growth

Non amenable groups have exponential growth, indeed they satisfy
the following linear isoperimetric inequality:
For every finite subset A ⊂ Γ and finite generating set S ,

|AS | > (1 +
κ2
S

2
)|A|

[just take f = 1A the indicator function of A.] In particular:

ρS := lim
n→∞

1

n
log |Sn| > 1 +

κ2
S

2

So non-amenability implies exponential growth.
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Uniform non-amenability

Theorem (B ’08)

There is ε = ε(d) > 0 such that for every field K and every finite
subset S ⊂ GLd(K ) such that 〈S〉 is non amenable,

κS > ε

Remark: this builds on earlier work with T. Gelander (partial
uniformity: in S only, not K ).

Question: Does this relate to a height lower bound as in the
solvable case ?

Answer: Yes
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Uniform non-amenability

Theorem (B ’08)

There is ε = ε(d) > 0 such that for every field K and every finite
subset S ⊂ GLd(K ) such that 〈S〉 is non amenable,

κS > ε

Let h(g) be a height function on Md ,d(Q), e.g. if g ∈ Md ,d(K )
and K is a number field with local degrees nv := [Kv : Qv ],

h(g) :=
1

[K : Q]

∑
v∈VK

nv log+ ||g ||v

Let AK be the ring of adèles of K .
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Spectral gap vs. Height gap

Lemma

The function g 7→ e−C [K :Q]h(g) is in L2(SLd(AK )) if C > d2.

But 〈S〉 is discrete in GLd(AK ), so in restriction to 〈S〉 this
function is in `2(〈S〉).

Corollary (Lehmer-type bound)

For some c = c(d) > 0, if S ⊂ GLd(K ) for some number field K ,

ĥ(S) := lim
m→+∞

1

m
h(Sm) >

c(d)

[K : Q]
κ2
S

• Here for A ⊂ GLd(K ), h(A) := maxg∈A h(g).

• Proof of Corollary: Jensen’s inequality.
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The normalized height ĥ(S)

ĥ(S) := lim
m→+∞

1

m
h(Sm)

Basic properties:

• ĥ(Sn) = nĥ(S),

• ĥ(S) = 0⇔ 〈S〉 quasi unipotent

• ĥ(gSg−1) = ĥ(S) if g ∈ GLd(Q).

⇒ ĥ(S) is really defined on the character variety (GLd)k//GLd ,
where k = |S |.

On this variety it is comparable (up to multiplicative and additive
constants) to an ordinary height function (e.g. Procesi (1970’s)
gave generators for the ring of invariants: tr(w(s1, ..., sk)), w ∈ Fk ,
|w | 6 C (d , k).)
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Height gap theorem

Theorem (Bogomolov-type theorem, B. 08)

There is ε = ε(d) > 0 such that if S ⊂ GLd(Q) is a finite subset
generating a non virtually solvable subgroup, then

ĥ(S) > ε

The previous theorem that κS > c(d) > 0 is a consequence of this.

• The proof makes use of local estimates for the joint displacement
of S on the symmetric spaces and Bruhat-Tits building associated
to reductive groups at each place. Bilu’s equidistribution theorem
and Zhang’s Bogomolov-type theorem on tori are also ingredients.

• The proof that κS > c(d) > 0 goes by finding two words of
bounded length with letters in S , which are generators of a free
subgroup.
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Borel density and co-amenability

Using similar ideas, one can give the following generalisation of the
uniform non-amenability result:

Theorem (B. 2013)

Let G be a semisimple Q-group. There is ε = ε(G) > 0 such that
if S ⊂ G(Q) is a finite set generating a Zariski dense subgroup Γ
and Γ′ 6 Γ = 〈S〉 a subgroup which is not Zariski-dense (e.g.
Γ′ = {1}), then

κS(`2(Γ/Γ′)) > ε

Remark: this can be seen as a uniform relative version of Borel’s
density theorem ( = if Γ is co-amenable, then it is Zariski dense).

The uniformity here allows to prove new spectral gaps, e.g. for
groups of toral automorphisms (Bekka-Guivarch).
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Spectral gaps for finite groups and expanders

If G is a finite group with generating set S , define:

κ(G ,S) := inf
f ∈`2

0(G)
max
s∈S

||sf − f ||2
||f ||2

The only difference with the previously defined κS is that we work
in the orthogonal of constants in `2(G ).

This quantity is closely related to the first non zero eigenvalue
λ1(G) of the combinatorial laplacian on the Cayley graph of
G = G(G ,S) of G :

1

|S |
λ1(G) 6 κ(G , S)2 6 λ1(G)
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Spectral gaps for finite groups and expanders

Definition (Expander)

A Cayley graph G = G(G ,S) is said to be an ε-expander if
λ1(G) > ε.
A family of Cayley graphs Gn>0 = G(Gn, Sn) is said to be a family
of expanders if there is ε > 0 such that λ1(Gn) > ε for all n > 0.

• first appears in a somewhat different form in a paper of
Kolmogorov and Barzdin about random graphs.

• first explicit construction by Margulis (1970s). E.g. take
Gn = SL(3,Z/nZ) and Sn = S mod n, for a fixed generating set S
of SL(3,Z). A consequence of Kazhdan’s property (T ).

• Lubotzky (1990’s) asks: which Cayley graphs are expanders ?
How does this relate to the group structure ?
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Spectral gaps for finite groups and expanders

A big breakthrough came with the work of Bourgain-Gamburd
(2005) who worked with Cayley graphs of SL(2,Z/pZ), p a prime,
and partly reduced Lubotzky’s question to classifying approximate
subgroups of SL(2,Z/pZ).

Definition (approximate subgroup)

A finite subset A of a group G is said to be a K -approximate
subgroup of G if A = A−1, 1 ∈ A and there is a subset X ⊂ G of
cardinality 6 K such that

AA ⊂ XA.

Helfgott (2005) classified approximate subgroups of SL(2,Z/pZ).
This was later generalized by Hrushovski, Pyber-Szabo and
Breuillard-Green-Tao to G(Fq), G fixed simple algebraic group over
a finite field Fq.
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Spectral gaps for finite groups and expanders

Definition (approximate subgroup)

A finite subset A of a group G is said to be a K -approximate
subgroup of G if A = A−1, 1 ∈ A and there is a subset X ⊂ G of
cardinality 6 K such that

AA ⊂ XA.

Helfgott (2005) classified approximate subgroups of SL(2,Z/pZ).
This was later generalized by Hrushovski, Pyber-Szabo and
Breuillard-Green-Tao to G(Fq), G fixed simple algebraic group over
a finite field Fq.

The upshot is: there are no non-trivial generating approximate
subgroups of G(Fq). They are either very small (|A| = O(KO(1))
or very large |G(Fq)|/|A| = O(KO(1))).
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Spectral gaps for finite groups and expanders

The Bourgain-Gamburd method then yields:

Theorem (Super-strong approximation)

Suppose G is a semisimple Q-group, and S ⊂ G(Q) is a finite
subset s.t. 〈S〉 is Zariski dense. Then Gp := G(G(Z/pZ), Sp),
where Sp = S mod p, is a family of expanders.

That Sp generates G(Z/pZ) for all but finitely many p’s is the
strong-approximation theorem of Matthews-Vaserstein-Weisfeiler
and Nori (also Hrushovski-Pillay).

Open problem: is the family of all Cayley graphs of G(Z/pZ) a
family of expanders ?
[B-Gamburd 2010: yes for SL2 and a family of primes with density
1].
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A characterization of weak expansion

Building on work of Hrushovski, B-Green-Tao proved in 2011 a
structure theorem for approximate subgroups of arbitrary groups:
they are contained in at most OK (1) translates of a
finite-by-nilpotent subgroup.

Here is a consequence for non (weak) expanders (answers a
question of Ellenberg-Hall-Kowalski):

Theorem (BGT)

Let ε > 0. Assume that G is a finite group and G = G(G ,S) is a
Cayley graph of G such that

λ1(G) 6
1

|G |ε
,

then G has a quotient of size > |G |ε/2 which has a nilpotent
subgroup of index 6 C (ε).
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Expanders and Bogomolov

A differential geometric inequality of Li-Yau relates the gonality
γ(U) of an algebraic curve U to the its λ1 (when the curve is
viewed as a hyperbolic surface):

1

8π
λ1(U) · vol(U) 6 γ(U)

γ(U) is the smallest degree of a non-constant meromorphic
function on U.

Another basic geometric comparison principle, due to Brooks and
Burger states that if U ′ is a finite cover of U, then

λ1(U ′) > c(U) · λ1(G(Gal(U ′|U)))

where G(Gal(U ′|U)) is the Cayley-Schreier graph of the covering
group.
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Expanders and Bogomolov

On the field of meromorphic functions, the natural height is the
degree. So the Li-Yau inequality can be interpreted as giving a
height lower bound in terms of a spectral gap.

Indeed, using the super-strong-approximation theorem above (more
precisely its extension to square free modulus by Peter Varju), and
the Brooks-Burger principle, one obtains:

Theorem (Ellenberg-Hall-Kowalski)

Let A→ U be an abelian scheme whose monodromy in Sp2g is
Zariski-dense. Then the compositum of all fields of meromorphic
functions on the covers U` associated to the `-torsion of A (`
prime) has the Bogomolov property.
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Ellenberg’s question

A field has the Bogomolov property if there is a uniform positive
lower bound on the (absolute) height of every element, which is
not a root of unity.

Examples: totally real numbers (Schinzel), Qab

(Amoroso-Zannier), Q(Etors) E elliptic curve over Q (Habegger).

Ellenberg question: Let F |Q be a Galois extension such that the
family of all Cayley graphs of all finite quotients of Gal(FQab|Qab)
is an expander family. Does F have the Bogomolov property ?
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A spectral criterion for Salem numbers

A Salem number is an algebraic integer α ∈ R, α > 1, all of whose
conjugates lie inside the unit disc with at least one on the unit
circle.

Salem’s conjecture: The set of Salem numbers is bounded away
from 1.

Rk: This is a special case of the Lehmer conjecture.

In the early 1980’s Sury gave a beautiful geometric reformulation
of Salem’s conjecture:

Sury: Salem’s conjecture holds iff there is a uniform lower bound
on the systole of arithmetic surfaces.
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of Salem’s conjecture:

Sury: Salem’s conjecture holds iff there is a uniform lower bound
on the systole of arithmetic surfaces.
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A spectral criterion for Salem numbers

Sury: Salem’s conjecture holds iff there is a uniform lower bound
on the systole of arithmetic surfaces.

An arithmetic surface is a quotient Σ := H2/Γ, where H2 is the
hyperbolic plane, and Γ is a lattice in PSL2(R) commensurable to
some an arithmetic group G(OK ), (K a number field, G a K -form
of PGL2).

The systole is the length of the shortest geodesic in H2/Γ.

Rk. Sury’s surface is congruence.
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A spectral criterion for Salem numbers

The systole of a hyperbolic surface Σ is related to its the Cheeger
constant h(Σ) and to the first eigenvalue of the Laplacian λ1(Σ).

h(Σ) := inf
A⊂Σ

L(∂A)

min{area(A), area(Σ \ A)}

Cheeger-Buser inequality:

1

4
h(Σ)2 6 λ1(Σ) 6 c(h(Σ) + h(Σ)2)

For congruence arithmetic surfaces (i.e. those containing a
congruence subgroup) we have:

Theorem (Selberg, Vigneras)

If Σ is a congruence arithmetic surface, then

λ1(Σ) >
3

16

26 / 29



A spectral criterion for Salem numbers

Observation (Breuillard-Deroin)

Salem’s conjecture holds iff given some (or any) d > 2 there is
c(d) > 0 such that

λ1(Σ̃) >
c(d)

vol(Σ̃)

for every d-cover Σ̃ of a congruence surface.

• In one direction the point is that a congruence surface with small
systole yields a 2-cover Σ̃ with h1(Σ̃) · vol(Σ̃) small.

• In the other direction, it turns out (B-D 2013) that Cheeger’s
inequality can be improved for d-covers Σ̃ of a surface (even any
manifold) Σ:

λ1(Σ̃) >
1

Cd2
h(Σ̃)

√
λ1(Σ)

So this together with Selberg-Vigneras concludes.
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A spectral criterion for Salem numbers

• In one direction the point is that a congruence surface with small
systole yields a 2-cover Σ̃ with h1(Σ̃) · vol(Σ̃) small.

• In the other direction, it turns out (B-D 2013) that Cheeger’s
inequality can be improved for d-covers Σ̃ of a surface (even any
manifold) Σ:

λ1(Σ̃) >
1

Cd2
h(Σ̃)

√
λ1(Σ)

So this together with Selberg-Vigneras concludes.

• Further question: More generally can one interpret the full
Lehmer conjecture in spectral terms ?
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Thank you!
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