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In propositional logic, conjunction A A B is related
to implication A — B by an adjunction

ANBLC <= A< B—C,

where < stands for the implication of propositions.
[f the commutativity of A is dropped, implication

splits into a left and right implication, according to
the maps A— AA B and A — B A A.

Algebraic semantics of such a non-commutative
logic have been studied by

e Ward and Dilworth 1939 (residuated lattices)
Bosbach 1965 (pseudo-hoops)

Bosbach 1982 (cone algebras, bricks)
Georgescu, lorgulescu 2001 (pseudo BCK-alg.)
Dvurecenskij, Vetterlein 2001 (GPE-algebras)
Galatos, Tsinakis 2005 (GBL-algebras)

Quantum B-algebras form a common framework
for such structures. Their unifying principle comes
from their spectrum which is a quantale.



The lecture consists of three parts:

A. Genesis of quantum B-algebras from a quantalic
approach of algebraic semantics;

B. Main examples and prototypes of logical algebras
with two implications (residuals);

C. Structural results.
1. Quantales and non-commutative logic

Quantales were introduced on a 1984 conference in
Taormina (Sicily) by C. J. Mulvey. His paper carries
the shortest title ever seen in mathematics, namely:

&

which refers to the non-commutative conjunction.

Definition 1. A quantale () is a partially ordered
semigroup with arbitrary joins \/ A (for A C @) so
that multiplication (& or -) distributes over joins:

a-(\/ai) :\/(aoai), (\/ai)-a:\/(ai~a).
il icl icl il
Q is unital if (Q, -) admits a unit element w.

Quantales () were conceived as non-commutative
spaces. Elements a € @) are open sets, \/ A is the
union, a - b generalizes the intersection. Examples:

e The spectrum of a C*-algebra,
e The space of a Penrose tiling.
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There is always a smallest element 0 := \/ @ and
a greatest element 1 :=\/ Q.

The multiplication gives rise to binary operations
(residuals — and »—) which satisfy

a<b—»c <= a-b<Lc<= b<a—c (1)

The corresponding “logic” suggests itself: The non-
commutative conjunction - gives rise to a pair of
implications, a left one »—, and a right one —».

Definition 2. A residuated posetis a po-semigroup
with two operations — and — satisfying (1).

Every residuated poset X naturally embeds into a
quantale () such that X can be recovered as the set
Q% of supercompact elements (H. Ono 1993, Ono
and Komori 1985). An element ¢ € @ is said to be
supercompact if for subsets A C @,

cé\/A — dae€ A: c<a.

For algebras (X; —,~») without a multiplication,
an embedding into a quantale is sometimes possible.
For example, it X is a pseudo BCK-algebra, this has
been shown by J. Kiihr (2005) in two steps:

1. Embed the algebra X into a A-ordered monoid.
2. Embed this monoid into a residuated lattice.
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To associate a quantale as a “spectrum” to X,
such an indirect way seems to be not appropriate.
We propose a different method.

Since every quantale () is a complete lattice, the
following operations are well-defined:

a—>b::/\{x€Q|x-a>b}
a«»b::/\{xGQM-x}b}

Of course, the “inverse residuals” are not adjoint to
the product. They merely satisty the implications

az2b—cl < la-b>cl= bza~c| (2

However, it will be sufficient that equivalence holds
among the supercompact elements!

Definition 3. Let () be a quantale. An element
c € () is balanced if is satisfies

c-(/\ai):/\(c-ai), (/\ai>-c:/\(ai~c).

iel iel iel iel
Equivalently, ¢ is balanced if and only if ¢ satisfies
a-c2b << a=>c—b

c-a>2b << a=>c~b

for all a,b € (). The product of balanced elements
is balanced, and there is a kind of duality between
balanced and supercompact elements:
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If ¢ is balanced and d supercompact, then ¢ — d
and ¢ ~» d are supercompact. Furthermore:

c—>\/ai:\/(c—>ai), (\/ai)—>d:/\(a2-—>d).

el el el el

Definition 4. A quantale @ is logicalif Q = \/ Q*
and every supercompact element is balanced.

For a logical quantale (), the set X := (°¢ of super-
compact elements is an algebra (X; — ~»). It is the
most general two-implication algebra coming from a
quantale. The associated quantale @@ = U(X) can
thus be viewed as the spectrum of X.

Questions arise:

e How general are these “quantalic” algebras X7
e Are the residuated posets of this type?

We will show that

1. virtually all important non-commutative logical
algebras (X; —, ~») are covered in this way and
thus have a spectrum;

2. the spectrum U(X) provides an efficient tool for
the structural analysis of logical algebras X:

The algebras X = (@° coming from a logical
quantale () will be called quantum B-algebras.
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2. Quantum B-algebras

Our terminology (concerning “B”) refers to the basic
inequalities

R B e RN
Yy~ z2 < (@~ y) o (2~ 2)
similar to the implication

YLz = T—oY<T— 2. (4)

Definition 5. A quantum B-algebras is a poset

X with two binary operations — and ~» satisfying
(3), (4), and the equivalence

Ty — 2 <= y<Lr~ 2 (5)

The counterpart of (4) holds for every quantum B-
algebra, 1. e. quantum B-algebras are self-dual with
respect to — and ~». Furthermore, the implications

TLYy=—= Y —> 2T —2
LY = Y~ 2T~ 2

hold for any quantum B-algebra.
Theorem 1. Up to isomorphism, there is a one-

to-one correspondence between logical quantales
and quantum B-algebras.



The two operations of a quantum B-algebra are
related by the pair of equations

r~oy=((~y) —y)~y
r—y=(z—=y ~y) —y
and the equation
= (Y~ z) =y~ (v —2)
Definition 6. A quantum B-algebra X is unital

if X admits an element u, the unit element, which
satisfiesu —r=u~x =xforall z € X.

A unit element is unique. If such an element u
exists, the axioms can be written as inequalities:
v (y —2) =y — (v~ 2)
y—z<(o—y) = (@2
Yy~ 2 < (@ y) o (2~ 2)
The unit element partially reduces the relation < to
the operations — and ~»:
TLY < UST—Y < U T~ Y.

Thus, if u the greatest element of X, the relation
r < vy just means that x — y is true. In general,
this need not be the case.

In terms of the quantale U(X), an element u € X
is a unit element of X if and only if v is a unit
element of U(X).



3. Examples

We consider three prototypes of logical algebras X
with two implications — and ~» and show that they
can be regarded as quantum B-algebras. In what
follows, we denote a greatest (smallest) element of
X (if it exists) by 1 and 0, respectively.

a) Pseudo BCK-algebras. For a set X with a
binary operation —, an element u is called a logical
unat if the equations

Uu—>Tr=xr, IT—>U=T—>T=1U

hold for all x € X. Such an element u is unique.

A logical unit u stands for the “true” proposition.

Definition 7. An algebra (X; —,~» 1) isa pseudo
BCK-algebra if 1 is a simultaneous logical unit for
the operations — and ~» such that the equations

@—y)~ ((y = 2)~ (@ = 2) =1
(@ y) = (Y~ 2) = (2~ 2)) =1
and the implication
T—yY=y~>r=1— x=y
are satisfied.

Every pseudo BCK-algebra is a unital quantum B-
algebra. Precisely:



Proposition 1. A unital quantum B-algebra X
s a pseudo BCK-algebra if and only if u = 1.

In other words, a pseudo BCK-algebra is a unital
quantum B-algebra where the truth value u ="“true”
is the top value!

b) Partially ordered groups give an important
case where the “truth” is located in the middle: For

a partially ordered group G with unit element u, we
define

r—y =y,  ax~y=aly (6

Then GG becomes a unital quantum B-algebra. The
multiplication is determined by each of the residuals:

Ty = (y—>(az—>a:')) — .
Proposition 2. A gquantum B-algebra X 1is a
partially ordered group if and only if

(2 =y ~y=(@~y —sy=uz
for all x,y € X.
By the above equations (6), a partially ordered

group is commutative if and only if the operations
— and ~» coincide.

The tradition of BCK-algebras produced another
concept of “commutativity”:
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c) Pre-cone algebras. Assume that a pseudo
BCK-algebra X satisfies

(z =y ~y=Wy~z)—mz=aVy (7

Then (7) makes X into a semilattice.

Definition 8. A pre-cone algebra is an algebra

(X; —,~) with a simultaneous logical unit which
satisfies Eq. (7) and

T —(y~2) =y~ (r—2)

Pre-cone algebras are special pseudo BCK-algebras.
They are implicit in Bosbach’s 1982 paper and have
been studied in 2009 by J. Kiihr where they are
called commutative pseudo BCK-algebras.

Bosbach’s cone algebras (i. e. algebras which can
be embedded into an [-group cone) form a special
case:

Proposition 3. For a pre-cone algebra X, the
equations

(x—=y) = —=2)=y—1)—=(y—2
(T~ y) o (270 2) = (Y~ 1)~ (Y~ 2)

are equivalent. They hold if and only if X is a
cone algebra.

10



d) Residuated posets are quantum B-algebras.
(The multiplication can be regarded as a derived
operation, as it is expressible by the residuals.) We
call a residuated poset X wnstal if the semigroup of
X has a unit element w.

Proposition 4. A residuated poset X is unital
of and only if X 1s a unital quantum B-algebra.

Proof. Assume that -« = x holds for all x € X.
Then

r<u—y < z-u<y <= <y
holds for all x € X, and thus u — y = y. Similarly,
Vo:u-x=ximplies u~ y =1y.
Conversely, assume that v — y = vy holds for all
y € X. Then
T UKSY < TSU—Y << T Y,
which yields x - u = x. []
For residuated posets X, Theorem 1 tells us that

U(X) can be made into a quantale in two essentially
different ways:

e The obvious way: —,~» are just the restrictions

of the residuals —»,»— of U(X);
e The natural way: —,~» do not extend to U(X).
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e) Quantales. In particular, residuated lattices
are quantum B-algebras, and thus, every quantale
() is a quantum B-algebra. However, the spectrum
U(Q) is not @ itself, but a bigger quantale. By
Proposition 4, a quantale () is a unital iff () is unital
as a quantum B-algebra iff U (@) is a unital quantale.

f) Pseudo effect-algebras. In 1994, Foulis and
Bennett introduced effect algebras for the study
of quantum effects in physics. A non-commutative
version (pseudo effect-algebras) was introduced in
2001 by Dvurecenskij and Vetterlein. By dropping
the greatest element, they arrived at the concept of
generalized pseudo effect-algebra (= GPFE-algebra).

Definition 9. A GPFE-algebra is a set E with a
constant u and a partially defined multiplication -
such that the following are satisfied.

(1) (a-b)-c=d < a-(b-c)=d
2)a-b=c = JdVeFE:b-d=b-a=c
B)a-b=a-c = b=c

b-a=c-a = b=c

(4)a-b=u = a=b=u

a-u=u-a=a.

The equations are to be understood so that the
products occurring in them exist.
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Every GPE-algebra E has a natural partial order
given by left or right divisibility:

a<b  «— dceFE:c-a=50
so that u is the smallest element of F.

The elements a and b in a product a - b = ¢ are
unique. We write b — ¢ := a and a ~» ¢ := b. Thus
a — b and a ~ b are defined if a < b, and then

(@a—b)-a=a-(a~b)=0.

In other words, the equation a - b = ¢ can be ex-
pressed in three different ways:

a-b=c < a=b—c < b=a~c¢

In terms of residuals, the associativity (1) can be
expressed by the equation

a~ (c—d)=c— (a~d)

with the proviso that the left-hand side exists if and
only if the right-hand side exists.

The partial operations on £ can be totalized: We
adjoin two elements 0,1 with 0 < a < 1 for all
a € I

~

E :=FEUu{0,1}
and extend the operations as follows.
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For x,y € E with L y, we set
rT—y=x~1y=>0,
Furthermore, we define

0O—-z2z=0~zrx=2x—1=2~1=1.

Proposition 5. Let E be a GPE-algebra. Then
E 1s a unital residuated poset, hence a unital
quantum B-algebra.

The product of E' can be extended to E as follows.
If a-bwith a,b € E is undefined, we set a - b := 1.
For any x € £, we set 0 -2 = x -0 = 0, and for
ye E~N{0}, wesety-1=1-y=1.

Definition 10. A pseudo effect-algebrais a GPE-
algebra with a greatest element v.

By Proposition 5, pseudo effect-algebras E are
equivalent to a special type of quantum B-algebra.
We call these quantum B-algebras E effective.

Definition 11. We call a quantum B-algebra X
bounded if X admits a smallest element.

If a smallest element (denoted by 0) exists, then X
also has a greatest element 1. Infact, 0 <y~ v &
y<0—xyelds)0— x=1forany x € X.
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Proposition 6. A unital quantum B-algebra X

is effective (i. e. X = FE for a pseudo effect-

algebra E) if and only if

(a) X is bounded, has a greatest element v < 1,
and 1 — 1 =1.

(b) u is the smallest element > 0.

(c) For a € X ~{0,1}, the maps x — (a — x)
and x +— (a ~ x) are isotone from the inter-
val |a,v] onto some interval |u,b] with b < 1.

} 1
(%
\ b
a
i
0 0

A similar characterization holds for arbitrary GPE-
algebras. Further examples arise by combining the
above prototypes.

4. The category of quantum B-algebras.

We have seen that up to isomorphism, there is a one-
to-one correspondence between quantum B-algebras
and logical quantales. What about the morphisms?
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Of course, a morphism of quantum B-algebras is
a monotonous map which respects the residuals.

Definition 12. We call a morphism f: X — Y
of quantum B-algebras spectral if for all y € Y and
z € f(X), the element y — 2 belongs to f(X). In
short: Y — f(X) C f(X).

The concept of spectral morphism is symmetric:

Proposition 7. Let f: X — Y be a spectral
morphism of quantum B-algebras. Then

Y~ f(X) C f(X).
Spectral morphisms are closed under composition.
Let qB denote the category of quantum B-algebras
with spectral morphisms.

Now we turn our attention to logical quantales.
Here is the counterpart to Definition 12.

Definition 13. We call a morphism ¢: () — L of
quantales logical if g respects arbitrary meets and

9(Q) —» L Cg(Q), 9@ — LCg@). (8

In contrast to Proposition 7, the two inclusions (8)
are not equivalent.
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By LQuant we denote the category of logical
quantales with logical morphisms. We get a functor

U: qB®® — LQuant (9)

which maps a quantum B-algebra to its spectrum.
Theorem 2. The functor U is an equivalence.

Now let us indicate how the theory of quantum B-
algebras takes profit from the theory of quantales.

5. Structural results.

We have mentioned three basic types of quantum
B-algebras with a unit element u:

1. Pseudo BCK-algebras;

2. partially ordered groups;
3. GPE-algebras.

In the sequel: X is a unital quantum B-algebra.

We will show that every quantum B-algebra has
a largest subalgebra of either type.

Definition 14. We call an element x € X integral

if xr - u =2 ~ u = u. The subset of integral
elements in X will be denoted by I(X).

Note that u is the greatest element of I(X), and
I(X) is a subalgebra of X. Moreover,
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Proposition 8. I(X) is the largest pseudo-BCK
subalgebra of X. In particular, X 1s a pseudo-
BCK algebra if and only if I(X) = X.

Secondly, we consider the class of partially ordered
oroups. For a unital quantale (), the invertible ele-
ments form a partially ordered group, the unit group
Q* of ). The inverse of an element a € () will be
denoted by a™t. If a € Q%, the inverse of a can be
expressed by the inverse residuals:

a'=a—u=a~ u.
Definition 15. We say that an element a € X is
wnvertible it it satisfies the equations

(a—u)—(a—z)=1
(@~ u)~ (a~ 1) = 2.

The following result shows that the unit group of
the quantale U (X)) is completely contained in X:

Theorem 3. The invertible elements of X form
a subalgebra X of X, the largest partially or-
dered subgroup of X. Furthermore, X coincides
with the unit group of the quantale U(X).

Corollary. X is a partially ordered group if and
only if X* =X.
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Thirdly, let us consider GPE-algebras. Instead
of introducing some formalism, we give an explicit
definition of effective elements:

Definition 16. Let X be bounded. Wecalla € X
effective it a — 1 = a ~ 1 = 1 and the following
implications hold for all z,y € X.

ULa—r<a—Y = TY
usa~rsa~y — Y
u<r<a—yYy<1l = dzeX:a—z==x
u<r<a~vwy<l = dzeX:a~ z=n1.

Let ET(X) be the set of effective elements a > u.

Proposition 9. Let X be bounded. Then E*(X)
is a GPE-algebra such that for a,b,c € E7(X),

a-b=c <= a=0—c
Furthermore, X = E for some GPE-algebra E if
and only if ET(X) =X~ {0,1} and 1 — 1 =1.

A GPE-algebra with a total multiplication is the
same as the positive cone of a partially ordered group.

We have indicated how quantum B-algebras X
specialize into pseudo BCK-algebras, partially or-
dered groups, or GPE-algebras, and that X contains
a largest subalgebra of each of these types.
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Accidentally, the tree types can be distinguished
by the position of their unit element u: For a pseudo
BCK-algebra, u is the largest element, for a partially
ordered group, u is in the middle, and for a GPE-
algebra, u is the smallest element. Our next theorem
deals with compounds of the first two types.

Galatos and Tsinakis (2005) consider generalized
BL-algebras (= GBL-algebras), that is, residuated
lattices X which satisty the equations

(y— @Ay))y=zAy=y(y~ (zAy)).

They prove that such a GBL-algebra splits into a
cartesian product G X Y of a lattice-ordered group
G with a lattice-ordered pseudo BCK-algebra Y. A
generalization to certain residuated posets was given
by Jénsson and Tsinakis (2004). Let us extend these
results to algebras without a product.

Definition 17. A quantum BL-algebra is a unital
quantum B-algebra X such that x — v and z ~ u
are invertible for all z € X.

Every GBL-algebra is a quantum BL-algebra. In
addition, a GBL-algebra is a residuated lattice with

r— X =T~ T =u,
and every x > u is invertible.
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Example. For a lattice-ordered group G, let A(G)
be the set of non-empty lower sets A C G generated
by finitely many maximal elements. For a pair of

elements A, B € A(G),
A— B ={ceG|cAC B}
A~ B:={ceG|AcC B}

again belong to A(G). This makes A(G) into a
residuated poset. The unit group A(G)* consists of

the lower sets |a := {c € G| ¢ < a} with a € G.

In particular, E :=]u is the unit element of A(G).
For any A € A(G),

A—-E=A~ FE=|(supA)™*

is invertible. Hence A(G) is a quantum BL-algebra.
In particular,

AG)” =G,
and I(A(G)) consists of the A with sup A = u.

In general, A(G) is not a GBL-algebra because
positive elements need not be invertible.

Let X be a unital quantum B-algebra, G be a
partially ordered group with a group homomorphism

v: G — Aut(X) and a map §: X — U(G°P) with
certain properties which will not be stated explicitly.

Then we can form a twisted semidirect product
(G X5 X which is again a unital quantum B-algebra.
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Moreover, there are natural embeddings
G—G X X — X

which turn G' and X into subalgebras of G x5 X.
The unit group and integral part of G x5 X are

(GD((;X)X:G[X(;XX, [(GD(gX):](X)

The structure of quantum BL-algebras can now be
determined explicitly:

Theorem 4. Every quantum BL-algebra X is of
the form X = X* x5 I(X). Conversely, every
twisted semidirect product G XsY with a partially
ordered group G and a pseudo-BCK algebra Y 1is
a quantum BL-algebra.

Note that a quantum BL-algebra X need not have
a multiplication. However, the elements of the unit
oroup X operate on X from the left and right
via multiplication in the quantale U(X). Therefore,
Theorem 4 implies, in particular, that any element
x € X can be written uniquely in the form

rT=a-y

with a € X* and y € I(X).

Question. How does a general twisted product
X XsY of quantum B-algebras look like? ...
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