Quantum B-Algebras and their Spectrum

Wolfgang Rump

In propositional logic, conjunction $A \wedge B$ is related to implication $A \to B$ by an adjunction

 $A \wedge B \leqslant C \iff A \leqslant B \to C,$

where \leq stands for the implication of propositions. If the commutativity of \wedge is dropped, implication splits into a left and right implication, according to the maps $A \mapsto A \wedge B$ and $A \mapsto B \wedge A$.

Algebraic semantics of such a non-commutative logic have been studied by

- Ward and Dilworth 1939 (residuated lattices)
- Bosbach 1965 (pseudo-hoops)
- Bosbach 1982 (cone algebras, bricks)
- Georgescu, Iorgulescu 2001 (pseudo BCK-alg.)
- Dvurečenskij, Vetterlein 2001 (GPE-algebras)
- Galatos, Tsinakis 2005 (GBL-algebras)

Quantum B-algebras form a common framework for such structures. Their unifying principle comes from their spectrum which is a quantale. The lecture consists of three parts:

- A. Genesis of quantum B-algebras from a quantalic approach of algebraic semantics;
- B. Main examples and prototypes of logical algebras with two implications (residuals);
- C. Structural results.

1. Quantales and non-commutative logic

Quantales were introduced on a 1984 conference in Taormina (Sicily) by C. J. Mulvey. His paper carries the shortest title ever seen in mathematics, namely:

&

which refers to the non-commutative conjunction.

Definition 1. A quantale Q is a partially ordered semigroup with arbitrary joins $\bigvee A$ (for $A \subset Q$) so that multiplication (& or \cdot) distributes over joins:

$$a \cdot \left(\bigvee_{i \in I} a_i\right) = \bigvee_{i \in I} (a \cdot a_i), \qquad \left(\bigvee_{i \in I} a_i\right) \cdot a = \bigvee_{i \in I} (a_i \cdot a).$$

Q is *unital* if (Q, \cdot) admits a unit element u.

Quantales Q were conceived as *non-commutative* spaces: Elements $a \in Q$ are open sets, $\bigvee A$ is the union, $a \cdot b$ generalizes the intersection. Examples:

- The spectrum of a C^* -algebra,
- The space of a Penrose tiling.

There is always a smallest element $0 := \bigvee \emptyset$ and a greatest element $1 := \bigvee Q$.

The multiplication gives rise to binary operations (residuals \rightarrow and \rightarrow) which satisfy

 $a \leqslant b \twoheadrightarrow c \iff a \cdot b \leqslant c \iff b \leqslant a \rightarrowtail c \quad (1)$

The corresponding "logic" suggests itself: The noncommutative conjunction \cdot gives rise to a pair of implications, a left one \rightarrow , and a right one \rightarrow .

Definition 2. A *residuated poset* is a po-semigroup with two operations \rightarrow and \rightarrow satisfying (1).

Every residuated poset X naturally embeds into a quantale Q such that X can be recovered as the set Q^{sc} of supercompact elements (H. Ono 1993, Ono and Komori 1985). An element $c \in Q$ is said to be *supercompact* if for subsets $A \subset Q$,

$$c \leqslant \bigvee A \implies \exists a \in A \colon c \leqslant a.$$

For algebras $(X; \rightarrow, \rightarrow)$ without a multiplication, an embedding into a quantale is sometimes possible. For example, if X is a pseudo BCK-algebra, this has been shown by J. Kühr (2005) in two steps:

1. Embed the algebra X into a \wedge -ordered monoid. 2. Embed this monoid into a residuated lattice. To associate a quantale as a "spectrum" to X, such an indirect way seems to be not appropriate. We propose a different method.

Since every quantale Q is a complete lattice, the following operations are well-defined:

$$a \to b := \bigwedge \{ x \in Q \mid x \cdot a \ge b \}$$
$$a \rightsquigarrow b := \bigwedge \{ x \in Q \mid a \cdot x \ge b \}$$

Of course, the "inverse residuals" are not adjoint to the product. They merely satisfy the implications

$$a \ge b \to c$$
 \Leftarrow $a \cdot b \ge c$ \Rightarrow $b \ge a \rightsquigarrow c$ (2)

However, it will be sufficient that equivalence holds among the supercompact elements!

Definition 3. Let Q be a quantale. An element $c \in Q$ is *balanced* if is satisfies

$$c \cdot \left(\bigwedge_{i \in I} a_i\right) = \bigwedge_{i \in I} (c \cdot a_i), \qquad \left(\bigwedge_{i \in I} a_i\right) \cdot c = \bigwedge_{i \in I} (a_i \cdot c).$$

Equivalently, c is balanced if and only if c satisfies

$$a \cdot c \ge b \iff a \ge c \to b$$
$$c \cdot a \ge b \iff a \ge c \rightsquigarrow b$$

for all $a, b \in Q$. The product of balanced elements is balanced, and there is a kind of duality between balanced and supercompact elements: If c is balanced and d supercompact, then $c \to d$ and $c \rightsquigarrow d$ are supercompact. Furthermore:

$$c \to \bigvee_{i \in I} a_i = \bigvee_{i \in I} (c \to a_i), \qquad (\bigvee_{i \in I} a_i) \to d = \bigwedge_{i \in I} (a_i \to d).$$

Definition 4. A quantale Q is *logical* if $Q = \bigvee Q^{sc}$ and every supercompact element is balanced.

For a logical quantale Q, the set $X := Q^{sc}$ of supercompact elements is an algebra $(X; \rightarrow, \rightsquigarrow)$. It is the most general two-implication algebra coming from a quantale. The associated quantale Q = U(X) can thus be viewed as the *spectrum* of X.

Questions arise:

- How general are these "quantalic" algebras X?
- Are the residuated posets of this type?

We will show that

- 1. virtually all important non-commutative logical algebras $(X; \rightarrow, \sim)$ are covered in this way and thus have a spectrum;
- **2.** the spectrum U(X) provides an efficient tool for the structural analysis of logical algebras X;

The algebras $X = Q^{sc}$ coming from a logical quantale Q will be called *quantum B-algebras*.

2. Quantum B-algebras

Our terminology (concerning "B") refers to the basic inequalities

$$y \to z \leqslant (x \to y) \to (x \to z)$$

$$y \rightsquigarrow z \leqslant (x \rightsquigarrow y) \rightsquigarrow (x \rightsquigarrow z)$$
(3)

similar to the implication

$$y \leqslant z \implies x \to y \leqslant x \to z.$$
 (4)

Definition 5. A quantum *B*-algebras is a poset X with two binary operations \rightarrow and \sim satisfying (3), (4), and the equivalence

$$x \leqslant y \to z \iff y \leqslant x \rightsquigarrow z. \tag{5}$$

The counterpart of (4) holds for every quantum Balgebra, i. e. quantum B-algebras are self-dual with respect to \rightarrow and \sim . Furthermore, the implications

$$\begin{array}{l} x \leqslant y \implies y \rightarrow z \leqslant x \rightarrow z \\ x \leqslant y \implies y \rightsquigarrow z \leqslant x \rightsquigarrow z \end{array}$$

hold for any quantum B-algebra.

Theorem 1. Up to isomorphism, there is a oneto-one correspondence between logical quantales and quantum B-algebras. The two operations of a quantum B-algebra are related by the pair of equations

$$x \rightsquigarrow y = ((x \rightsquigarrow y) \rightarrow y) \rightsquigarrow y$$
$$x \rightarrow y = ((x \rightarrow y) \rightsquigarrow y) \rightarrow y$$

and the equation

$$x \to (y \rightsquigarrow z) = y \rightsquigarrow (x \to z).$$

Definition 6. A quantum B-algebra X is *unital* if X admits an element u, the *unit element*, which satisfies $u \to x = u \rightsquigarrow x = x$ for all $x \in X$.

A unit element is unique. If such an element u exists, the axioms can be written as inequalities:

$$\begin{aligned} x &\leadsto (y \to z) = y \to (x \rightsquigarrow z) \\ y &\to z \leqslant (x \to y) \to (x \to z) \\ y &\leadsto z \leqslant (x \rightsquigarrow y) \rightsquigarrow (x \rightsquigarrow z) \end{aligned}$$

The unit element partially reduces the relation \leq to the operations \rightarrow and \sim :

$$x \leqslant y \iff u \leqslant x \to y \iff u \leqslant x \to y$$
.
Thus, if u the greatest element of X , the relation
 $x \leqslant y$ just means that $x \to y$ is true. In general,
this need not be the case.

In terms of the quantale U(X), an element $u \in X$ is a unit element of X if and only if u is a unit element of U(X).

3. Examples

We consider three prototypes of logical algebras X with two implications \rightarrow and \sim and show that they can be regarded as quantum B-algebras. In what follows, we denote a greatest (smallest) element of X (if it exists) by 1 and 0, respectively.

a) Pseudo BCK-algebras. For a set X with a binary operation \rightarrow , an element u is called a *logical* unit if the equations

 $u \to x = x, \quad x \to u = x \to x = u$

hold for all $x \in X$. Such an element u is unique.

A logical unit u stands for the "true" proposition.

Definition 7. An algebra $(X; \rightarrow, \rightsquigarrow, 1)$ is a *pseudo BCK-algebra* if 1 is a simultaneous logical unit for the operations \rightarrow and \rightarrow such that the equations

$$(x \to y) \rightsquigarrow ((y \to z) \rightsquigarrow (x \to z)) = 1 (x \rightsquigarrow y) \to ((y \rightsquigarrow z) \to (x \rightsquigarrow z)) = 1$$

and the implication

$$x \to y = y \rightsquigarrow x = 1 \implies x = y$$

are satisfied.

Every pseudo BCK-algebra is a unital quantum Balgebra. Precisely: **Proposition 1.** A unital quantum B-algebra X is a pseudo BCK-algebra if and only if u = 1.

In other words, a pseudo BCK-algebra is a unital quantum B-algebra where the truth value u = "true" is the top value!

b) Partially ordered groups give an important case where the "truth" is located in the middle: For a partially ordered group G with unit element u, we define

$$x \to y := yx^{-1}, \qquad x \rightsquigarrow y := x^{-1}y$$
 (6)

Then G becomes a unital quantum B-algebra. The multiplication is determined by each of the residuals:

$$x \cdot y = (y \to (x \to x)) \to x.$$

Proposition 2. A quantum B-algebra X is a partially ordered group if and only if

$$(x \to y) \rightsquigarrow y = (x \rightsquigarrow y) \to y = x$$

for all $x, y \in X$.

By the above equations (6), a partially ordered group is commutative if and only if the operations \rightarrow and \sim coincide.

The tradition of BCK-algebras produced another concept of "commutativity":

c) Pre-cone algebras. Assume that a pseudo BCK-algebra X satisfies

$$(x \to y) \rightsquigarrow y = (y \rightsquigarrow x) \to x =: x \lor y.$$
(7)

Then (7) makes X into a semilattice.

Definition 8. A *pre-cone algebra* is an algebra $(X; \rightarrow, \rightarrow)$ with a simultaneous logical unit which satisfies Eq. (7) and

$$x \to (y \rightsquigarrow z) = y \rightsquigarrow (x \to z).$$

Pre-cone algebras are special pseudo BCK-algebras. They are implicit in Bosbach's 1982 paper and have been studied in 2009 by J. Kühr where they are called *commutative pseudo BCK-algebras*.

Bosbach's *cone algebras* (i. e. algebras which can be embedded into an l-group cone) form a special case:

Proposition 3. For a pre-cone algebra X, the equations

$$\begin{aligned} &(x \to y) \to (x \to z) = (y \to x) \to (y \to z) \\ &(x \rightsquigarrow y) \rightsquigarrow (x \rightsquigarrow z) = (y \rightsquigarrow x) \rightsquigarrow (y \rightsquigarrow z) \end{aligned}$$

are equivalent. They hold if and only if X is a cone algebra.

d) Residuated posets are quantum B-algebras. (The multiplication can be regarded as a derived operation, as it is expressible by the residuals.) We call a residuated poset X unital if the semigroup of X has a unit element u.

Proposition 4. A residuated poset X is unital if and only if X is a unital quantum B-algebra.

Proof. Assume that $x \cdot u = x$ holds for all $x \in X$. Then

$$x \leqslant u \to y \iff x \cdot u \leqslant y \iff x \leqslant y$$

holds for all $x \in X$, and thus $u \to y = y$. Similarly, $\forall x \colon u \cdot x = x$ implies $u \rightsquigarrow y = y$.

Conversely, assume that $u \to y = y$ holds for all $y \in X$. Then

$$x \cdot u \leqslant y \iff x \leqslant u \to y \iff x \leqslant y,$$

 \square

which yields $x \cdot u = x$.

For residuated posets X, Theorem 1 tells us that U(X) can be made into a quantale in two essentially different ways:

- The obvious way: \rightarrow, \sim are just the restrictions of the residuals \rightarrow, \rightarrow of U(X);
- The natural way: \rightarrow, \sim do not extend to U(X).

e) Quantales. In particular, residuated lattices are quantum B-algebras, and thus, every quantale Q is a quantum B-algebra. However, the spectrum U(Q) is not Q itself, but a bigger quantale. By Proposition 4, a quantale Q is a unital iff Q is unital as a quantum B-algebra iff U(Q) is a unital quantale.

f) Pseudo effect-algebras. In 1994, Foulis and Bennett introduced *effect algebras* for the study of quantum effects in physics. A non-commutative version (*pseudo effect-algebras*) was introduced in 2001 by Dvurečenskij and Vetterlein. By dropping the greatest element, they arrived at the concept of *generalized pseudo effect-algebra* (=*GPE-algebra*).

Definition 9. A *GPE-algebra* is a set E with a constant u and a partially defined multiplication \cdot such that the following are satisfied.

(1) $(a \cdot b) \cdot c = d \iff a \cdot (b \cdot c) = d$ (2) $a \cdot b = c \implies \exists a', b' \in E : b \cdot a' = b' \cdot a = c$ (3) $a \cdot b = a \cdot c \implies b = c$ $b \cdot a = c \cdot a \implies b = c$ (4) $a \cdot b = u \implies a = b = u$ (5) $a \cdot u = u \cdot a = a$.

The equations are to be understood so that the products occurring in them exist.

Every GPE-algebra E has a natural partial order given by left or right divisibility:

 $a\leqslant b \ :\Longleftrightarrow \ \exists c\in E\colon c\cdot a=b$

so that u is the smallest element of E.

The elements a and b in a product $a \cdot b = c$ are unique. We write $b \to c := a$ and $a \rightsquigarrow c := b$. Thus $a \to b$ and $a \rightsquigarrow b$ are defined if $a \leq b$, and then

$$(a \to b) \cdot a = a \cdot (a \rightsquigarrow b) = b.$$

In other words, the equation $a \cdot b = c$ can be expressed in three different ways:

$$a \cdot b = c \iff a = b \to c \iff b = a \rightsquigarrow c$$

In terms of residuals, the associativity (1) can be expressed by the equation

$$a \rightsquigarrow (c \rightarrow d) = c \rightarrow (a \rightsquigarrow d)$$

with the proviso that the left-hand side exists if and only if the right-hand side exists.

The partial operations on E can be totalized: We adjoin two elements 0, 1 with 0 < a < 1 for all $a \in E$:

$$\widetilde{E} := E \sqcup \{0, 1\}$$

and extend the operations as follows.

For $x, y \in \widetilde{E}$ with $x \not\leq y$, we set

 $x \to y = x \rightsquigarrow y = 0.$

Furthermore, we define

 $0 \to x = 0 \rightsquigarrow x = x \to 1 = x \rightsquigarrow 1 = 1.$

Proposition 5. Let E be a GPE-algebra. Then \widetilde{E} is a unital residuated poset, hence a unital quantum B-algebra.

The product of E can be extended to \widetilde{E} as follows. If $a \cdot b$ with $a, b \in E$ is undefined, we set $a \cdot b := 1$. For any $x \in \widetilde{E}$, we set $0 \cdot x = x \cdot 0 = 0$, and for $y \in \widetilde{E} \smallsetminus \{0\}$, we set $y \cdot 1 = 1 \cdot y = 1$.

Definition 10. A *pseudo effect-algebra* is a GPEalgebra with a greatest element v.

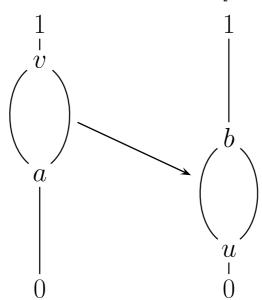
By Proposition 5, pseudo effect-algebras E are equivalent to a special type of quantum B-algebra. We call these quantum B-algebras \tilde{E} effective.

Definition 11. We call a quantum B-algebra X bounded if X admits a smallest element.

If a smallest element (denoted by 0) exists, then X also has a greatest element 1. In fact, $0 \leq y \rightsquigarrow x \Leftrightarrow y \leq 0 \rightarrow x$ yields $0 \rightarrow x = 1$ for any $x \in X$.

Proposition 6. A unital quantum B-algebra X is effective (i. e. $X \cong \widetilde{E}$ for a pseudo effectalgebra E) if and only if

- (a) X is bounded, has a greatest element v < 1, and $1 \rightarrow 1 = 1$.
- (b) u is the smallest element > 0.
- (c) For $a \in X \setminus \{0, 1\}$, the maps $x \mapsto (a \to x)$ and $x \mapsto (a \rightsquigarrow x)$ are isotone from the interval [a, v] onto some interval [u, b] with b < 1.



A similar characterization holds for arbitrary GPEalgebras. Further examples arise by combining the above prototypes.

4. The category of quantum B-algebras.

We have seen that up to isomorphism, there is a oneto-one correspondence between quantum B-algebras and logical quantales. What about the morphisms? Of course, a morphism of quantum B-algebras is a monotonous map which respects the residuals.

Definition 12. We call a morphism $f: X \to Y$ of quantum B-algebras *spectral* if for all $y \in Y$ and $z \in f(X)$, the element $y \to z$ belongs to f(X). In short: $Y \to f(X) \subset f(X)$.

The concept of spectral morphism is symmetric:

Proposition 7. Let $f: X \to Y$ be a spectral morphism of quantum B-algebras. Then

 $Y \leadsto f(X) \subset f(X).$

Spectral morphisms are closed under composition.

Let \mathbf{qB} denote the category of quantum B-algebras with spectral morphisms.

Now we turn our attention to logical quantales. Here is the counterpart to Definition 12.

Definition 13. We call a morphism $g: Q \to L$ of quantales *logical* if g respects arbitrary meets and

$$g(Q) \twoheadrightarrow L \subset g(Q), \qquad g(Q) \rightarrowtail L \subset g(Q).$$
 (8)

In contrast to Proposition 7, the two inclusions (8) are not equivalent.

By **LQuant** we denote the category of logical quantales with logical morphisms. We get a functor

$$U: \mathbf{qB}^{\mathrm{op}} \to \mathbf{LQuant}$$
 (9)

which maps a quantum B-algebra to its spectrum.

Theorem 2. The functor U is an equivalence.

Now let us indicate how the theory of quantum Balgebras takes profit from the theory of quantales.

5. Structural results.

We have mentioned three basic types of quantum B-algebras with a unit element u:

- **1.** Pseudo BCK-algebras;
- **2.** partially ordered groups;
- **3.** GPE-algebras.

In the sequel: X is a unital quantum B-algebra.

We will show that every quantum B-algebra has a largest subalgebra of either type.

Definition 14. We call an element $x \in X$ integral if $x \to u = x \rightsquigarrow u = u$. The subset of integral elements in X will be denoted by I(X).

Note that u is the greatest element of I(X), and I(X) is a subalgebra of X. Moreover,

Proposition 8. I(X) is the largest pseudo-BCK subalgebra of X. In particular, X is a pseudo-BCK algebra if and only if I(X) = X.

Secondly, we consider the class of partially ordered groups. For a unital quantale Q, the invertible elements form a partially ordered group, the *unit group* Q^{\times} of Q. The inverse of an element $a \in Q$ will be denoted by a^{-1} . If $a \in Q^{\times}$, the inverse of a can be expressed by the inverse residuals:

$$a^{-1} = a \to u = a \rightsquigarrow u.$$

Definition 15. We say that an element $a \in X$ is *invertible* if it satisfies the equations

$$(a \to u) \to (a \to x) = x$$
$$(a \rightsquigarrow u) \rightsquigarrow (a \rightsquigarrow x) = x.$$

The following result shows that the unit group of the quantale U(X) is completely contained in X:

Theorem 3. The invertible elements of X form a subalgebra X^{\times} of X, the largest partially ordered subgroup of X. Furthermore, X^{\times} coincides with the unit group of the quantale U(X).

Corollary. X is a partially ordered group if and only if $X^{\times} = X$.

Thirdly, let us consider GPE-algebras. Instead of introducing some formalism, we give an explicit definition of effective elements:

Definition 16. Let X be bounded. We call $a \in X$ effective if $a \to 1 = a \rightsquigarrow 1 = 1$ and the following implications hold for all $x, y \in X$.

$$u \leqslant a \to x \leqslant a \to y \implies x \leqslant y$$
$$u \leqslant a \rightsquigarrow x \leqslant a \rightsquigarrow y \implies x \leqslant y$$
$$u \leqslant x \leqslant a \to y < 1 \implies \exists z \in X : a \to z = x$$
$$u \leqslant x \leqslant a \rightsquigarrow y < 1 \implies \exists z \in X : a \rightsquigarrow z = x.$$

Let $E^+(X)$ be the set of effective elements $a \ge u$.

Proposition 9. Let X be bounded. Then $E^+(X)$ is a GPE-algebra such that for $a, b, c \in E^+(X)$,

 $a \cdot b = c \iff a = b \to c.$

Furthermore, $X \cong \tilde{E}$ for some GPE-algebra E if and only if $E^+(X) = X \setminus \{0, 1\}$ and $1 \to 1 = 1$.

A GPE-algebra with a total multiplication is the same as the positive cone of a partially ordered group.

We have indicated how quantum B-algebras X specialize into pseudo BCK-algebras, partially ordered groups, or GPE-algebras, and that X contains a largest subalgebra of each of these types. Accidentally, the tree types can be distinguished by the position of their unit element u: For a pseudo BCK-algebra, u is the largest element, for a partially ordered group, u is in the middle, and for a GPEalgebra, u is the smallest element. Our next theorem deals with compounds of the first two types.

Galatos and Tsinakis (2005) consider generalized BL-algebras (= GBL-algebras), that is, residuated lattices X which satisfy the equations

$$(y \to (x \land y))y = x \land y = y(y \rightsquigarrow (x \land y)).$$

They prove that such a GBL-algebra splits into a cartesian product $G \times Y$ of a lattice-ordered group G with a lattice-ordered pseudo BCK-algebra Y. A generalization to certain residuated posets was given by Jónsson and Tsinakis (2004). Let us extend these results to algebras without a product.

Definition 17. A quantum *BL*-algebra is a unital quantum B-algebra X such that $x \to u$ and $x \rightsquigarrow u$ are invertible for all $x \in X$.

Every GBL-algebra is a quantum BL-algebra. In addition, a GBL-algebra is a residuated lattice with

$$x \to x = x \rightsquigarrow x = u,$$

and every $x \ge u$ is invertible.

Example. For a lattice-ordered group G, let $\Delta(G)$ be the set of non-empty lower sets $A \subset G$ generated by finitely many maximal elements. For a pair of elements $A, B \in \Delta(G)$,

$$A \to B := \{ c \in G \mid cA \subset B \}$$
$$A \rightsquigarrow B := \{ c \in G \mid Ac \subset B \}$$

again belong to $\Delta(G)$. This makes $\Delta(G)$ into a residuated poset. The unit group $\Delta(G)^{\times}$ consists of the lower sets $\downarrow a := \{c \in G \mid c \leq a\}$ with $a \in G$. In particular, $E := \downarrow u$ is the unit element of $\Delta(G)$. For any $A \in \Delta(G)$,

$$A \to E = A \rightsquigarrow E = \downarrow (\sup A)^{-1}$$

is invertible. Hence $\Delta(G)$ is a quantum BL-algebra. In particular,

$$\Delta(G)^{\times} \cong G,$$

and $I(\Delta(G))$ consists of the A with $\sup A = u$.

In general, $\Delta(G)$ is not a GBL-algebra because positive elements need not be invertible.

Let X be a unital quantum B-algebra, G be a partially ordered group with a group homomorphism $\gamma: G \to \operatorname{Aut}(X)$ and a map $\delta: X \to U(G^{\operatorname{op}})$ with certain properties which will not be stated explicitly.

Then we can form a twisted semidirect product $G \ltimes_{\delta} X$ which is again a unital quantum B-algebra.

Moreover, there are natural embeddings

$$G \hookrightarrow G \ltimes_{\delta} X \hookleftarrow X$$

which turn G and X into subalgebras of $G \ltimes_{\delta} X$. The unit group and integral part of $G \ltimes_{\delta} X$ are

$$(G \ltimes_{\delta} X)^{\times} = G \ltimes_{\delta} X^{\times}, \qquad I(G \ltimes_{\delta} X) = I(X).$$

The structure of quantum BL-algebras can now be determined explicitly:

Theorem 4. Every quantum BL-algebra X is of the form $X \cong X^{\times} \ltimes_{\delta} I(X)$. Conversely, every twisted semidirect product $G \ltimes_{\delta} Y$ with a partially ordered group G and a pseudo-BCK algebra Y is a quantum BL-algebra.

Note that a quantum BL-algebra X need not have a multiplication. However, the elements of the unit group X^{\times} operate on X from the left and right via multiplication in the quantale U(X). Therefore, Theorem 4 implies, in particular, that any element $x \in X$ can be written uniquely in the form

$$x = a \cdot y$$

with $a \in X^{\times}$ and $y \in I(X)$.

Question. How does a general twisted product $X \times_{\delta} Y$ of quantum B-algebras look like? ...