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In propositional logic, conjunction A ∧B is related
to implication A→ B by an adjunction

A ∧B 6 C ⇐⇒ A 6 B → C,

where 6 stands for the implication of propositions.
If the commutativity of ∧ is dropped, implication
splits into a left and right implication, according to
the maps A 7→ A ∧B and A 7→ B ∧ A.

Algebraic semantics of such a non-commutative
logic have been studied by

• Ward and Dilworth 1939 (residuated lattices)

• Bosbach 1965 (pseudo-hoops)

• Bosbach 1982 (cone algebras, bricks)

• Georgescu, Iorgulescu 2001 (pseudo BCK-alg.)

• Dvurečenskij, Vetterlein 2001 (GPE-algebras)

• Galatos, Tsinakis 2005 (GBL-algebras)

Quantum B-algebras form a common framework
for such structures. Their unifying principle comes
from their spectrum which is a quantale.



The lecture consists of three parts:

A. Genesis of quantum B-algebras from a quantalic
approach of algebraic semantics;

B. Main examples and prototypes of logical algebras
with two implications (residuals);

C. Structural results.

1. Quantales and non-commutative logic

Quantales were introduced on a 1984 conference in
Taormina (Sicily) by C. J. Mulvey. His paper carries
the shortest title ever seen in mathematics, namely:

&

which refers to the non-commutative conjunction.

Definition 1. A quantale Q is a partially ordered
semigroup with arbitrary joins

∨
A (for A ⊂ Q) so

that multiplication (& or ·) distributes over joins:

a ·
(∨

i∈I

ai

)
=

∨

i∈I

(a ·ai),
(∨

i∈I

ai

)
·a =

∨

i∈I

(ai ·a).

Q is unital if (Q, ·) admits a unit element u.

Quantales Q were conceived as non-commutative
spaces: Elements a ∈ Q are open sets,

∨
A is the

union, a · b generalizes the intersection. Examples:

• The spectrum of a C∗-algebra,

• The space of a Penrose tiling.
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There is always a smallest element 0 :=
∨

∅ and
a greatest element 1 :=

∨
Q.

The multiplication gives rise to binary operations
(residuals ։ and ֌) which satisfy

a 6 b ։ c ⇐⇒ a · b 6 c⇐⇒ b 6 a ֌ c (1)

The corresponding “logic” suggests itself: The non-
commutative conjunction · gives rise to a pair of
implications, a left one ֌, and a right one ։.

Definition 2. A residuated poset is a po-semigroup
with two operations ֌ and ։ satisfying (1).

Every residuated poset X naturally embeds into a
quantale Q such that X can be recovered as the set
Qsc of supercompact elements (H. Ono 1993, Ono
and Komori 1985). An element c ∈ Q is said to be
supercompact if for subsets A ⊂ Q,

c 6
∨

A =⇒ ∃a ∈ A : c 6 a.

For algebras (X ;→, ;) without a multiplication,
an embedding into a quantale is sometimes possible.
For example, if X is a pseudo BCK-algebra, this has
been shown by J. Kühr (2005) in two steps:

1. Embed the algebra X into a ∧-ordered monoid.
2. Embed this monoid into a residuated lattice.
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To associate a quantale as a “spectrum” to X ,
such an indirect way seems to be not appropriate.
We propose a different method.

Since every quantale Q is a complete lattice, the
following operations are well-defined:

a→ b :=
∧
{x ∈ Q | x · a > b}

a ; b :=
∧
{x ∈ Q | a · x > b}

Of course, the “inverse residuals” are not adjoint to
the product. They merely satisfy the implications

a > b→ c ⇐ a · b > c ⇒ b > a ; c (2)

However, it will be sufficient that equivalence holds
among the supercompact elements!

Definition 3. Let Q be a quantale. An element
c ∈ Q is balanced if is satisfies

c ·
(∧

i∈I

ai

)
=

∧

i∈I

(c · ai),
(∧

i∈I

ai

)
· c =

∧

i∈I

(ai · c).

Equivalently, c is balanced if and only if c satisfies

a · c > b ⇐⇒ a > c→ b

c · a > b ⇐⇒ a > c ; b

for all a, b ∈ Q. The product of balanced elements
is balanced, and there is a kind of duality between
balanced and supercompact elements:
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If c is balanced and d supercompact, then c→ d
and c ; d are supercompact. Furthermore:

c→
∨

i∈I

ai =
∨

i∈I

(c→ ai),
(∨

i∈I

ai

)
→ d =

∧

i∈I

(ai → d).

Definition 4. A quantale Q is logical if Q =
∨

Qsc

and every supercompact element is balanced.

For a logical quantale Q, the set X := Qsc of super-
compact elements is an algebra (X ;→, ;). It is the
most general two-implication algebra coming from a
quantale. The associated quantale Q = U(X) can
thus be viewed as the spectrum of X .

Questions arise:

• How general are these “quantalic” algebras X?

• Are the residuated posets of this type?

We will show that

1. virtually all important non-commutative logical
algebras (X ;→, ;) are covered in this way and
thus have a spectrum;

2. the spectrum U(X) provides an efficient tool for
the structural analysis of logical algebras X ;

The algebras X = Qsc coming from a logical
quantale Q will be called quantum B-algebras.
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2. Quantum B-algebras

Our terminology (concerning “B”) refers to the basic
inequalities

y → z 6 (x→ y)→ (x→ z)

y ; z 6 (x ; y) ; (x ; z)
(3)

similar to the implication

y 6 z =⇒ x→ y 6 x→ z. (4)

Definition 5. A quantum B-algebras is a poset
X with two binary operations → and ; satisfying
(3), (4), and the equivalence

x 6 y → z ⇐⇒ y 6 x ; z. (5)

The counterpart of (4) holds for every quantum B-
algebra, i. e. quantum B-algebras are self-dual with
respect to→ and ;. Furthermore, the implications

x 6 y =⇒ y → z 6 x→ z

x 6 y =⇒ y ; z 6 x ; z

hold for any quantum B-algebra.

Theorem 1. Up to isomorphism, there is a one-
to-one correspondence between logical quantales
and quantum B-algebras.
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The two operations of a quantum B-algebra are
related by the pair of equations

x ; y =
(
(x ; y)→ y

)
; y

x→ y =
(
(x→ y) ; y

)
→ y

and the equation

x→ (y ; z) = y ; (x→ z).

Definition 6. A quantum B-algebra X is unital
if X admits an element u, the unit element, which
satisfies u→ x = u ; x = x for all x ∈ X .

A unit element is unique. If such an element u

exists, the axioms can be written as inequalities:

x ; (y → z) = y → (x ; z)

y → z 6 (x→ y)→ (x→ z)

y ; z 6 (x ; y) ; (x ; z)

The unit element partially reduces the relation 6 to
the operations → and ;:

x 6 y ⇐⇒ u 6 x→ y ⇐⇒ u 6 x ; y.

Thus, if u the greatest element of X , the relation
x 6 y just means that x → y is true. In general,
this need not be the case.

In terms of the quantale U(X), an element u ∈ X

is a unit element of X if and only if u is a unit
element of U(X).
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3. Examples

We consider three prototypes of logical algebras X

with two implications→ and ; and show that they
can be regarded as quantum B-algebras. In what
follows, we denote a greatest (smallest) element of
X (if it exists) by 1 and 0, respectively.

a) Pseudo BCK-algebras. For a set X with a
binary operation→, an element u is called a logical
unit if the equations

u→ x = x , x→ u = x→ x = u

hold for all x ∈ X . Such an element u is unique.

A logical unit u stands for the “true” proposition.

Definition 7. An algebra (X ;→, ;, 1) is a pseudo
BCK-algebra if 1 is a simultaneous logical unit for
the operations → and ; such that the equations

(x→ y) ;

(
(y → z) ; (x→ z)

)
= 1

(x ; y)→
(
(y ; z)→ (x ; z)

)
= 1

and the implication

x→ y = y ; x = 1 =⇒ x = y

are satisfied.

Every pseudo BCK-algebra is a unital quantum B-
algebra. Precisely:
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Proposition 1. A unital quantum B-algebra X

is a pseudo BCK-algebra if and only if u = 1.

In other words, a pseudo BCK-algebra is a unital
quantum B-algebra where the truth value u =“true”
is the top value!

b) Partially ordered groups give an important
case where the “truth” is located in the middle: For
a partially ordered group G with unit element u, we
define

x→ y := yx−1, x ; y := x−1y (6)

Then G becomes a unital quantum B-algebra. The
multiplication is determined by each of the residuals:

x · y =
(
y → (x→ x)

)
→ x.

Proposition 2. A quantum B-algebra X is a
partially ordered group if and only if

(x→ y) ; y = (x ; y)→ y = x

for all x, y ∈ X.

By the above equations (6), a partially ordered
group is commutative if and only if the operations
→ and ; coincide.

The tradition of BCK-algebras produced another
concept of “commutativity”:
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c) Pre-cone algebras. Assume that a pseudo
BCK-algebra X satisfies

(x→ y) ; y = (y ; x)→ x =: x ∨ y. (7)

Then (7) makes X into a semilattice.

Definition 8. A pre-cone algebra is an algebra
(X ;→, ;) with a simultaneous logical unit which
satisfies Eq. (7) and

x→ (y ; z) = y ; (x→ z).

Pre-cone algebras are special pseudo BCK-algebras.
They are implicit in Bosbach’s 1982 paper and have
been studied in 2009 by J. Kühr where they are
called commutative pseudo BCK-algebras.

Bosbach’s cone algebras (i. e. algebras which can
be embedded into an l-group cone) form a special
case:

Proposition 3. For a pre-cone algebra X, the
equations

(x→ y)→ (x→ z) = (y → x)→ (y → z)

(x ; y) ; (x ; z) = (y ; x) ; (y ; z)

are equivalent. They hold if and only if X is a
cone algebra.
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d) Residuated posets are quantum B-algebras.
(The multiplication can be regarded as a derived
operation, as it is expressible by the residuals.) We
call a residuated poset X unital if the semigroup of
X has a unit element u.

Proposition 4. A residuated poset X is unital
if and only if X is a unital quantum B-algebra.

Proof. Assume that x ·u = x holds for all x ∈ X .
Then

x 6 u→ y ⇐⇒ x · u 6 y ⇐⇒ x 6 y

holds for all x ∈ X , and thus u→ y = y. Similarly,
∀x : u · x = x implies u ; y = y.

Conversely, assume that u → y = y holds for all
y ∈ X . Then

x · u 6 y ⇐⇒ x 6 u→ y ⇐⇒ x 6 y,

which yields x · u = x. �

For residuated posets X , Theorem 1 tells us that
U(X) can be made into a quantale in two essentially
different ways:

• The obvious way: →, ; are just the restrictions
of the residuals ։, ֌ of U(X);

• The natural way: →, ; do not extend to U(X).
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e) Quantales. In particular, residuated lattices
are quantum B-algebras, and thus, every quantale
Q is a quantum B-algebra. However, the spectrum
U(Q) is not Q itself, but a bigger quantale. By
Proposition 4, a quantale Q is a unital iff Q is unital
as a quantum B-algebra iff U(Q) is a unital quantale.

f) Pseudo effect-algebras. In 1994, Foulis and
Bennett introduced effect algebras for the study
of quantum effects in physics. A non-commutative
version (pseudo effect-algebras) was introduced in
2001 by Dvurečenskij and Vetterlein. By dropping
the greatest element, they arrived at the concept of
generalized pseudo effect-algebra (=GPE-algebra).

Definition 9. A GPE-algebra is a set E with a
constant u and a partially defined multiplication ·
such that the following are satisfied.

(1) (a · b) · c = d ⇐⇒ a · (b · c) = d

(2) a · b = c =⇒ ∃a′, b′ ∈ E : b · a′ = b′ · a = c

(3) a · b = a · c =⇒ b = c

b · a = c · a =⇒ b = c

(4) a · b = u =⇒ a = b = u

(5) a · u = u · a = a.

The equations are to be understood so that the
products occurring in them exist.
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Every GPE-algebra E has a natural partial order
given by left or right divisibility:

a 6 b :⇐⇒ ∃c ∈ E : c · a = b

so that u is the smallest element of E.

The elements a and b in a product a · b = c are
unique. We write b→ c := a and a ; c := b. Thus
a→ b and a ; b are defined if a 6 b, and then

(a→ b) · a = a · (a ; b) = b.

In other words, the equation a · b = c can be ex-
pressed in three different ways:

a · b = c ⇐⇒ a = b→ c ⇐⇒ b = a ; c

In terms of residuals, the associativity (1) can be
expressed by the equation

a ; (c→ d) = c→ (a ; d)

with the proviso that the left-hand side exists if and
only if the right-hand side exists.

The partial operations on E can be totalized: We
adjoin two elements 0, 1 with 0 < a < 1 for all
a ∈ E:

Ẽ := E ⊔ {0, 1}

and extend the operations as follows.
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For x, y ∈ Ẽ with x 66 y, we set

x→ y = x ; y = 0.

Furthermore, we define

0→ x = 0 ; x = x→ 1 = x ; 1 = 1.

Proposition 5. Let E be a GPE-algebra. Then
Ẽ is a unital residuated poset, hence a unital
quantum B-algebra.

The product of E can be extended to Ẽ as follows.
If a · b with a, b ∈ E is undefined, we set a · b := 1.
For any x ∈ Ẽ, we set 0 · x = x · 0 = 0, and for
y ∈ Ẽ r {0}, we set y · 1 = 1 · y = 1.

Definition 10. A pseudo effect-algebra is a GPE-
algebra with a greatest element v.

By Proposition 5, pseudo effect-algebras E are
equivalent to a special type of quantum B-algebra.
We call these quantum B-algebras Ẽ effective.

Definition 11. We call a quantum B-algebra X

bounded if X admits a smallest element.

If a smallest element (denoted by 0) exists, then X

also has a greatest element 1. In fact, 0 6 y ; x⇔
y 6 0→ x yields 0→ x = 1 for any x ∈ X .
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Proposition 6. A unital quantum B-algebra X

is effective (i. e. X ∼= Ẽ for a pseudo effect-
algebra E) if and only if

(a) X is bounded, has a greatest element v < 1,
and 1→ 1 = 1.

(b) u is the smallest element > 0.

(c) For a ∈ X r {0, 1}, the maps x 7→ (a → x)
and x 7→ (a ; x) are isotone from the inter-
val [a, v] onto some interval [u, b] with b < 1.

0

a

v

1

0

u

b

1

A similar characterization holds for arbitrary GPE-
algebras. Further examples arise by combining the
above prototypes.

4. The category of quantum B-algebras.

We have seen that up to isomorphism, there is a one-
to-one correspondence between quantum B-algebras
and logical quantales. What about the morphisms?
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Of course, a morphism of quantum B-algebras is
a monotonous map which respects the residuals.

Definition 12. We call a morphism f : X → Y

of quantum B-algebras spectral if for all y ∈ Y and
z ∈ f (X), the element y → z belongs to f (X). In
short: Y → f (X) ⊂ f (X).

The concept of spectral morphism is symmetric:

Proposition 7. Let f : X → Y be a spectral
morphism of quantum B-algebras. Then

Y ; f (X) ⊂ f (X).

Spectral morphisms are closed under composition.

Let qB denote the category of quantum B-algebras
with spectral morphisms.

Now we turn our attention to logical quantales.
Here is the counterpart to Definition 12.

Definition 13. We call a morphism g : Q→ L of
quantales logical if g respects arbitrary meets and

g(Q) ։ L ⊂ g(Q), g(Q) ֌ L ⊂ g(Q). (8)

In contrast to Proposition 7, the two inclusions (8)
are not equivalent.
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By LQuant we denote the category of logical
quantales with logical morphisms. We get a functor

U : qBop → LQuant (9)

which maps a quantum B-algebra to its spectrum.

Theorem 2. The functor U is an equivalence.

Now let us indicate how the theory of quantum B-
algebras takes profit from the theory of quantales.

5. Structural results.

We have mentioned three basic types of quantum
B-algebras with a unit element u:

1. Pseudo BCK-algebras;

2. partially ordered groups;

3. GPE-algebras.

In the sequel: X is a unital quantum B-algebra.

We will show that every quantum B-algebra has
a largest subalgebra of either type.

Definition 14. We call an element x ∈ X integral
if x → u = x ; u = u. The subset of integral
elements in X will be denoted by I(X).

Note that u is the greatest element of I(X), and
I(X) is a subalgebra of X . Moreover,
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Proposition 8. I(X) is the largest pseudo-BCK
subalgebra of X. In particular, X is a pseudo-
BCK algebra if and only if I(X) = X.

Secondly, we consider the class of partially ordered
groups. For a unital quantale Q, the invertible ele-
ments form a partially ordered group, the unit group
Q× of Q. The inverse of an element a ∈ Q will be
denoted by a−1. If a ∈ Q×, the inverse of a can be
expressed by the inverse residuals:

a−1 = a→ u = a ; u.

Definition 15. We say that an element a ∈ X is
invertible if it satisfies the equations

(a→ u)→ (a→ x) = x

(a ; u) ; (a ; x) = x.

The following result shows that the unit group of
the quantale U(X) is completely contained in X :

Theorem 3. The invertible elements of X form
a subalgebra X× of X, the largest partially or-
dered subgroup of X. Furthermore, X× coincides
with the unit group of the quantale U(X).

Corollary. X is a partially ordered group if and
only if X× = X.
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Thirdly, let us consider GPE-algebras. Instead
of introducing some formalism, we give an explicit
definition of effective elements:

Definition 16. Let X be bounded. We call a ∈ X

effective if a → 1 = a ; 1 = 1 and the following
implications hold for all x, y ∈ X .

u 6 a→ x 6 a→ y =⇒ x 6 y

u 6 a ; x 6 a ; y =⇒ x 6 y

u 6 x 6 a→ y < 1 =⇒ ∃z ∈ X : a→ z = x

u 6 x 6 a ; y < 1 =⇒ ∃z ∈ X : a ; z = x.

Let E+(X) be the set of effective elements a > u.

Proposition 9. Let X be bounded. Then E+(X)
is a GPE-algebra such that for a, b, c ∈ E+(X),

a · b = c ⇐⇒ a = b→ c.

Furthermore, X ∼= Ẽ for some GPE-algebra E if
and only if E+(X) = X r {0, 1} and 1→ 1 = 1.

A GPE-algebra with a total multiplication is the
same as the positive cone of a partially ordered group.

We have indicated how quantum B-algebras X

specialize into pseudo BCK-algebras, partially or-
dered groups, or GPE-algebras, and that X contains
a largest subalgebra of each of these types.
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Accidentally, the tree types can be distinguished
by the position of their unit element u: For a pseudo
BCK-algebra, u is the largest element, for a partially
ordered group, u is in the middle, and for a GPE-
algebra, u is the smallest element. Our next theorem
deals with compounds of the first two types.

Galatos and Tsinakis (2005) consider generalized
BL-algebras (= GBL-algebras), that is, residuated
lattices X which satisfy the equations

(
y → (x ∧ y)

)
y = x ∧ y = y

(
y ; (x ∧ y)

)
.

They prove that such a GBL-algebra splits into a
cartesian product G× Y of a lattice-ordered group
G with a lattice-ordered pseudo BCK-algebra Y . A
generalization to certain residuated posets was given
by Jónsson and Tsinakis (2004). Let us extend these
results to algebras without a product.

Definition 17. A quantum BL-algebra is a unital
quantum B-algebra X such that x→ u and x ; u

are invertible for all x ∈ X .

Every GBL-algebra is a quantum BL-algebra. In
addition, a GBL-algebra is a residuated lattice with

x→ x = x ; x = u,

and every x > u is invertible.
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Example. For a lattice-ordered group G, let ∆(G)
be the set of non-empty lower sets A ⊂ G generated
by finitely many maximal elements. For a pair of
elements A, B ∈ ∆(G),

A→ B := {c ∈ G | cA ⊂ B}

A ; B := {c ∈ G | Ac ⊂ B}

again belong to ∆(G). This makes ∆(G) into a
residuated poset. The unit group ∆(G)× consists of
the lower sets ↓a := {c ∈ G | c 6 a} with a ∈ G.
In particular, E :=↓u is the unit element of ∆(G).
For any A ∈ ∆(G),

A→ E = A ; E =↓(sup A)−1

is invertible. Hence ∆(G) is a quantum BL-algebra.
In particular,

∆(G)× ∼= G,

and I(∆(G)) consists of the A with sup A = u.

In general, ∆(G) is not a GBL-algebra because
positive elements need not be invertible.

Let X be a unital quantum B-algebra, G be a
partially ordered group with a group homomorphism
γ : G → Aut(X) and a map δ : X → U(Gop) with
certain properties which will not be stated explicitly.

Then we can form a twisted semidirect product
G ⋉δ X which is again a unital quantum B-algebra.
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Moreover, there are natural embeddings

G →֒ G ⋉δ X ←֓ X

which turn G and X into subalgebras of G ⋉δ X .
The unit group and integral part of G ⋉δ X are

(G ⋉δ X)× = G ⋉δ X×, I(G ⋉δ X) = I(X).

The structure of quantum BL-algebras can now be
determined explicitly:

Theorem 4. Every quantum BL-algebra X is of
the form X ∼= X× ⋉δ I(X). Conversely, every
twisted semidirect product G⋉δY with a partially
ordered group G and a pseudo-BCK algebra Y is
a quantum BL-algebra.

Note that a quantum BL-algebra X need not have
a multiplication. However, the elements of the unit
group X× operate on X from the left and right
via multiplication in the quantale U(X). Therefore,
Theorem 4 implies, in particular, that any element
x ∈ X can be written uniquely in the form

x = a · y

with a ∈ X× and y ∈ I(X).

Question. How does a general twisted product
X ×δ Y of quantum B-algebras look like? ...
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