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monadic (Boolean) algebras (Halmos)

Algebraic counterpart of the one-variable fragment of the classical
predicate logic; additional unary operation - algebraic counterpart of the
existential quantifier.

monadic Heyting algebras (Monteiro, Varsavsky, Bezhanisvili, Harding, ...)

monadic MV -algebras (Rutledge, Grigolia, Di Nola, Belluce, Lettieri,
Georgescu, Iorgulescu, Leustean)

monadic GMV -algebras (Rachůnek, Šalounová)

monadic BL-algebras (Grigolia)

Here: monadic bounded integral residuated lattices
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PBL ... propositional calculus of a logic

connectives: �,→, ,∧,∨,

truth constant: 0̄

deduction rules (two modus ponens and implications):

(MP→)
ϕ, ϕ→ ψ

ψ

(MP )
ϕ, ϕ ψ

ψ

(Imp→)
ϕ→ ψ

ϕ ψ

(Imp )
ϕ ψ

ϕ→ ψ
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MPBL ... a monadic propositional logic

contains PBL with axioms:

(M1) ϕ→ ∃ϕ, ϕ ∃ϕ;

(M2) ∀ϕ→ ϕ, ∀ϕ ϕ;

(M3) ∀(ϕ→ ∃ψ) ≡ ∃ϕ→ ∃ψ, ∀(ϕ ∃ψ) ≡ ∃ϕ ∃ψ;

(M4) ∀(∃ϕ→ ψ) ≡ ∃ϕ→ ∀ψ, ∀(∃ϕ ψ) ≡ ∃ϕ ∀ψ;

(M5) ∀(ϕ ∨ ∃ψ) ≡ ∀ϕ ∨ ∃ψ;

(M6) ∃0̄ ≡ 0̄;

(M7) ∃∀ϕ ≡ ∀ϕ;

(M8) ∀∀ϕ ≡ ϕ;

(M9) ∃(∃ϕ� ∃ψ) ≡ ∃ϕ� ∃ψ.

deduction rules: (MP→), (MP ), (Imp→), (Imp ) and necessitation

(Nec)
ϕ

∀ϕ
.
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Bounded integral residuated lattice A = (A; �,∨,∧,→, , 0, 1), type
〈2, 2, 2, 2, 2, 0, 0, 〉

Axioms:

(i) (A; �, 1) is a monoid (need not be commutative).

(ii) (A; ∨,∧, 0, 1) is a bounded lattice.

(iii) x � y ≤ z iff x ≤ y → z iff y ≤ x  z for any x , y , z ∈ A.

x− := x → 0, x∼ := x  0

a residuated lattice := a bounded integral residuated lattice
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A residuated lattice is:

a) pseudo-MTL-algebra iff (x → y) ∨ (y → x) = 1 = (x  y) ∨ (y  x);

b) R`-monoid iff (x → y)� x = x ∧ y = y � (y  x);

c) pseudo-BL-algebra iff b) + c);

d) involutive iff x−∼ = x = x∼−;

e) GMV -algebra iff c) + d)

f) Heyting algebra iff � and ∧ coincide.
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Monadic residuated lattice A = (A; �,∨,∧,→, , 0, 1,∃,∀) = (M; ∃,∀),

type 〈2, 2, 2, 2, 2, 0, 0, 1, 1〉
A = (A; �,∨,∧,→, , 0, 1) is a residuated lattice and for each x , y ∈ A:

(iv) x → ∃x = 1, x  ∃x = 1;

(v) ∀x → x = 1, ∀x  x = 1;

(vi) ∀(x → ∃y) = ∃x → ∃y , ∀(x  ∃y) = ∃x  ∃y ;

(vii) ∀(∃x → y) = ∃x → ∀y , ∀(∃x  y) = ∃x  ∀y ;

(viii) ∀(x ∨ ∃y) = ∀x ∨ ∃y ;

(ix) ∃∀x = ∀x ;

(x) ∀∀x = ∀x ;

(xi) ∃(∃x � ∃y) = ∃x � ∃y ;

(xii) ∃(x � x) = ∃x � ∃x .
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Theorem

If A = (A; ∃,∀) is a monadic residuated lattice, then (x ∈ A):

(1) (∃x)− = ∀(x−), (∃x)∼ = ∀(x∼) ;

(2) (∃x)−∼ = (∀(x−))∼, (∃x)∼− = (∀(x∼))−;

(3) (∃(x−))∼ = ∀(x−∼), (∃(x∼))− = ∀(x∼−);

(4) (∀(x−∼))−∼ = ∀(x−∼), ∀(x∼−))∼− = ∀(x∼−);

(5) (∃(x−∼))−∼ = (∃x)−∼ ≥ ∃(x−∼), (∃(x∼−) = (∃x)∼− ≥ ∃(x∼−).

Residuated lattice A ... good if x−∼ = x∼−, for every x ∈ A.

Theorem

If (A ; ∃,∀) is a monadic residuated lattice such that the residuated lattice
A is good, then for every x ∈ A:

(6) (∀(x−))∼ = (∀x∼)−;

(7) (∃(x−))∼ = (∃(x∼))−.
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(A ; ∃,∀) ... monadic residuated lattice

A∃∀ := {x ∈ A : x = ∃x} = {x ∈ A : x = ∀x}.

Theorem

If (A ; ∃,∀) is a monadic residuated lattice, then A∃∀ is a subalgebra of A.

A=(A; ⊕,�,− ,∼ , 0, 1) ... GMV -algebra

x → y := x− ⊕ y = (x � y∼)−

x  y := y ⊕ x∼ = (y− � x)∼

x ∨ y := x ⊕ (y � x−), x ∧ y := (x− ⊕ y)� x

(A; �,∨,∧,→, , 0, 1) is a good residuated lattice.

A = (A; �,∨,∧,→, , 0, 1) ... a good residuated lattice

x ⊕ y := (x− � y−)∼ = (x∼ � y∼)−

x− := x → 0, x∼ := x  0
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A ... GMV -algebra, ∃ : A −→ A

(A; ∃) ... monadic GMV -algebra if

(E1) x ≤ ∃x ;

(E2) ∃(x ∨ y) = ∃x ∨ ∃y ;

(E3) ∃((∃x)−) = (∃x)−, ∃((∃x)∼) = (∃x)∼;

(E4) ∃(∃x ⊕ ∃y) = ∃x ⊕ ∃y ;

(E5) ∃(x � x) = ∃x � ∃x ;

(E6) ∃(x ⊕ x) = ∃x ⊕ ∃x .

∀x := (∃x−)∼ = (∃x∼)−

Theorem

Let (A; �,∨,∧,→, , 0, 1,∃,∀) be a good monadic residuated lattice
such that (A; ⊕,�,− ,∼ , 0, 1) is a GMV -algebra. Then
(A; ⊕,�,− ,∼ , 0, 1, ∃) = (A; ∃) is a monadic GMV -algebra.
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A ... Heyting algebra, ∃ : A −→ A, ∀ : A −→ A

(A; ∃, ∀) ... monadic Heyting algebra if

(H1) ∀x ≤ x ;

(H2) x ≤ ∃x
(H3) ∀(x ∧ y) = ∀x ∧ ∀y ;

(H4) ∃(x ∨ y) = ∃x ∨ ∃y ;

(H5) ∀1 = 1;

(H6) ∃0 = 0;

(H7) ∀∃x = ∀x ;

(H8) ∃∀x = ∀x ;

(H9) ∃(∃x ∧ y) = ∃x ∧ ∃y .
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Theorem

Let (A;∃,∀) be a monadic residuated lattice such that A is a Heyting
algebra. Then (A;∃,∀) is a monadic Heyting algebra.
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M ... residuated lattice, X 6= ∅ ... a set
MX ... direct power of M, residuated lattice
MX contains a subalgebra isomorphic to M.

p ∈ MX , R(p) := {p(x) : x ∈ X}

A ... a subalgebra of MX

A ... a functional monadic residuated lattice if

(i) for every p ∈ A there exist

sup
M

R(p) =
∨

R(p), inf
M

R(p) =
∧

R(p);

(ii) for every p ∈ A, the constant functions ∃p and ∀p defined by

∃p(x) :=
∨

R(p), ∀p(x) :=
∧

R(p),

for any x ∈ X , belong to A.
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Theorem

If A is a functional residuated lattice and p, q ∈ A, then

p ≤ ∃p;

∀p ≤ p;

∃∀p = ∀p;

∀∀p = ∀p;

∃(∃p � ∃q) = ∃p � ∃q;

∀(p ∨ ∃q) = ∀p ∨ ∃q;

∀(p → ∃q) = ∃p → ∃q, ∀(p  ∃q) = ∃p  ∃q;

∀(∃p → q) = ∃p → ∀q, ∀(∃p  q) = ∃p  ∀q;

∃(p � p) = ∃p � ∃p.

Theorem

If M is a residuated lattice, X 6= ∅ and A ⊆ MX is a functional monadic
residuated lattice, then (A;∃,∀) is a monadic residuated lattice.
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A ... residuated lattice, B ... subalgebra of A

B ... relatively complete if for each a ∈ A, the set {b ∈ B : a ≤ b} has a
least element

∧
a≤b∈B b, and the set {b ∈ B : b ≤ a} has a greatest

element
∨

a≥b∈B b.

B ... relatively complete subalgebra of A

B ... m-relatively complete if for every a ∈ A and x ∈ B such that
x ≥ a� a there is v ∈ B such that v ≥ a and v � v ≤ x .
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Theorem

If (A; ∃, ∀) is a monadic residuated lattice, then A∃∀ is an m-relatively
complete subalgebra of A.

Theorem

There is a 1-1 correspondence between monadic residuated lattices and
pairs (A,B), where B is an m-relatively complete subalgebra of A.
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A ... residuated lattice

∅ 6= F ⊆ A ... filter of A if

(i) x , y ∈ F =⇒ x � y ∈ F ;

(ii) x ∈ F , y ∈ M, x ≤ y =⇒ y ∈ F .

D ⊆ A ... deductive system of A if

(iii) 1 ∈ D;

(iv) x ∈ D, x → y ∈ D =⇒ y ∈ D.

filters = deductive systems
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F(A) ... complete lattice of all filters of A

(A; ∃, ∀) ... monadic residuted lattice, F ∈ F(A)

F ... monadic filter (m-filter) of (A; ∃,∀) if x ∈ F =⇒ ∀x ∈ F .

F(A; ∃,∀) ... complete lattice of all m-filters of (A;∃,∀)

Theorem

If (A; ∃, ∀) is a monadic residuated lattice, then the lattice F(A;∃,∀) is
isomorphic to the lattice F(A∃∀) of all filters of the residuated lattice A∃∀.
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