Quantifiers on bounded integral residuated lattices

Jiří Rachůnek Dana Šalounová

Palacký University in Olomouc VŠB–Technical University of Ostrava

Czech Republic

ASUV 2011 Salerno, May 18–20, 2011

Jiří Rachůnek, Dana Šalounová (CR)

Quantifiers on residuated lattices

Salerno 2011 1 / 18

monadic (Boolean) algebras (Halmos)

Algebraic counterpart of the one-variable fragment of the classical predicate logic; additional unary operation - algebraic counterpart of the existential quantifier.

monadic Heyting algebras (Monteiro, Varsavsky, Bezhanisvili, Harding, ...) monadic *MV*-algebras (Rutledge, Grigolia, Di Nola, Belluce, Lettieri, Georgescu, lorgulescu, Leustean)

monadic GMV-algebras (Rachůnek, Šalounová)

monadic *BL*-algebras (Grigolia)

Here: monadic bounded integral residuated lattices

 \mathcal{PBL} ... propositional calculus of a logic connectives: $\odot, \rightarrow, \rightsquigarrow, \land, \lor$,

truth constant: 0

deduction rules (two modus ponens and implications):

► 4 Ξ ► 4

\mathcal{MPBL} ... a monadic propositional logic

contains \mathcal{PBL} with axioms:

(M1) $\varphi \to \exists \varphi, \varphi \rightsquigarrow \exists \varphi;$ (M2) $\forall \varphi \rightarrow \varphi, \ \forall \varphi \rightsquigarrow \varphi;$ (M3) $\forall (\varphi \rightarrow \exists \psi) \equiv \exists \varphi \rightarrow \exists \psi, \forall (\varphi \rightsquigarrow \exists \psi) \equiv \exists \varphi \rightsquigarrow \exists \psi;$ (M4) $\forall (\exists \varphi \rightarrow \psi) \equiv \exists \varphi \rightarrow \forall \psi, \forall (\exists \varphi \rightsquigarrow \psi) \equiv \exists \varphi \rightsquigarrow \forall \psi;$ (M5) $\forall (\varphi \lor \exists \psi) \equiv \forall \varphi \lor \exists \psi$; (M6) $\exists \overline{0} \equiv \overline{0}$: (M7) $\exists \forall \varphi \equiv \forall \varphi$; (M8) $\forall \forall \varphi \equiv \varphi$: (M9) $\exists (\exists \varphi \odot \exists \psi) \equiv \exists \varphi \odot \exists \psi.$ deduction rules: (MP \rightarrow), (MP \rightarrow), (Imp \rightarrow), (Imp \rightarrow) and necessitation (Nec) $\frac{\varphi}{\forall \varphi}$.

イロト イポト イヨト イヨト

Bounded integral residuated lattice $A = (A; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$, type $(2, 2, 2, 2, 2, 0, 0, \rangle$

Axioms:

- (i) $(A; \odot, 1)$ is a monoid (need not be commutative).
- (ii) $(A; \lor, \land, 0, 1)$ is a bounded lattice.
- (iii) $x \odot y \le z$ iff $x \le y \to z$ iff $y \le x \rightsquigarrow z$ for any $x, y, z \in A$.

 $x^- := x \to 0, \ x^\sim := x \to 0$

a residuated lattice := a bounded integral residuated lattice

< 同 ト く ヨ ト く ヨ ト

A residuated lattice is:

- a) pseudo-MTL-algebra iff $(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \rightsquigarrow y) \lor (y \rightsquigarrow x);$
- b) *Rl*-monoid iff $(x \rightarrow y) \odot x = x \land y = y \odot (y \rightsquigarrow x)$;
- c) pseudo-BL-algebra iff b) + c);
- d) involutive iff $x^{-\sim} = x = x^{\sim -}$;
- e) GMV-algebra iff c) + d)
- f) Heyting algebra iff \odot and \land coincide.

A (10) F (10) F (10)

 $\begin{array}{l} \mbox{Monadic residuated lattice } A = (A; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1, \exists, \forall) = (M; \exists, \forall), \\ \mbox{type } \langle 2, 2, 2, 2, 2, 0, 0, 1, 1 \rangle \end{array}$

 $A = (A; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ is a residuated lattice and for each $x, y \in A$:

(iv)
$$x \to \exists x = 1, x \rightsquigarrow \exists x = 1;$$

(v) $\forall x \to x = 1, \forall x \rightsquigarrow x = 1;$
(vi) $\forall (x \to \exists y) = \exists x \to \exists y, \forall (x \rightsquigarrow \exists y) = \exists x \rightsquigarrow \exists y;$
(vii) $\forall (\exists x \to y) = \exists x \to \forall y, \forall (\exists x \rightsquigarrow y) = \exists x \rightsquigarrow \forall y;$
(viii) $\forall (x \lor \exists y) = \forall x \lor \exists y;$
(ix) $\exists \forall x = \forall x;$
(x) $\forall \forall x = \forall x;$
(xi) $\exists (\exists x \odot \exists y) = \exists x \odot \exists y;$
(xii) $\exists (x \odot x) = \exists x \odot \exists x.$

Jiří Rachůnek, Dana Šalounová (CR)

A (10) > A (10) > A

If
$$A = (A; \exists, \forall)$$
 is a monadic residuated lattice, then $(x \in A)$:
(1) $(\exists x)^- = \forall (x^-), (\exists x)^- = \forall (x^-);$
(2) $(\exists x)^{--} = (\forall (x^-))^-, (\exists x)^{--} = (\forall (x^-))^-;$
(3) $(\exists (x^-))^- = \forall (x^{--}), (\exists (x^-))^- = \forall (x^{--});$
(4) $(\forall (x^{--}))^{--} = \forall (x^{--}), \forall (x^{--}))^{--} = \forall (x^{--});$
(5) $(\exists (x^{--}))^{--} = (\exists x)^{--} \ge \exists (x^{--}), (\exists (x^{--}) = (\exists x)^{--} \ge \exists (x^{--}).$

Residuated lattice
$$A \dots$$
 good if $x^{-\sim} = x^{\sim-}$, for every $x \in A$.

Theorem

If $(A; \exists, \forall)$ is a monadic residuated lattice such that the residuated lattice A is good, then for every $x \in A$:

(6)
$$(\forall (x^{-}))^{\sim} = (\forall x^{\sim})^{-};$$

(7) $(\exists (x^{-}))^{\sim} = (\exists (x^{\sim}))^{-}.$

 $(A; \exists, \forall) \dots$ monadic residuated lattice $A_{\exists \forall} := \{x \in A : x = \exists x\} = \{x \in A : x = \forall x\}.$

Theorem

If $(A; \exists, \forall)$ is a monadic residuated lattice, then $A_{\exists\forall}$ is a subalgebra of A.

$$A=(A; \oplus, \odot, -, ^{\sim}, 0, 1) \dots GMV-algebra$$

$$x \to y := x^{-} \oplus y = (x \odot y^{\sim})^{-}$$

$$x \rightsquigarrow y := y \oplus x^{\sim} = (y^{-} \odot x)^{\sim}$$

$$x \lor y := x \oplus (y \odot x^{-}), x \land y := (x^{-} \oplus y) \odot x$$

$$(A; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1) \text{ is a good residuated lattice.}$$

$$A = (A; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1) \dots \text{ a good residuated lattice}$$

$$x \oplus y := (x^{-} \odot y^{-})^{\sim} = (x^{\sim} \odot y^{\sim})^{-}$$

$$x^{-} := x \to 0, x^{\sim} := x \rightsquigarrow 0$$

```
A ... GMV-algebra, \exists : A \longrightarrow A
(A; \exists) ... monadic GMV-algebra if
(E1) x \leq \exists x;
(E2) \exists (x \lor y) = \exists x \lor \exists y;
(E3) \exists ((\exists x)^{-}) = (\exists x)^{-}, \exists ((\exists x)^{\sim}) = (\exists x)^{\sim};
(E4) \exists (\exists x \oplus \exists y) = \exists x \oplus \exists y;
(E5) \exists (x \odot x) = \exists x \odot \exists x;
(E6) \exists (x \oplus x) = \exists x \oplus \exists x.
\forall x := (\exists x^{-})^{\sim} = (\exists x^{\sim})^{-}
```

Let $(A; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1, \exists, \forall)$ be a good monadic residuated lattice such that $(A; \oplus, \odot, ^{-}, ^{\sim}, 0, 1)$ is a *GMV*-algebra. Then $(A; \oplus, \odot, ^{-}, ^{\sim}, 0, 1, \exists) = (A; \exists)$ is a monadic *GMV*-algebra.

```
A ... Heyting algebra, \exists : A \longrightarrow A, \forall : A \longrightarrow A
(A; \exists, \forall) ... monadic Heyting algebra if
(H1) \forall x \leq x;
(H2) x < \exists x
(H3) \forall (x \land y) = \forall x \land \forall y;
(H4) \exists (x \lor y) = \exists x \lor \exists y;
(H5) \forall 1 = 1;
(H6) \exists 0 = 0;
(H7) \forall \exists x = \forall x;
(H8) \exists \forall x = \forall x;
(H9) \exists (\exists x \land y) = \exists x \land \exists y.
```

Let $(A; \exists, \forall)$ be a monadic residuated lattice such that A is a Heyting algebra. Then $(A; \exists, \forall)$ is a monadic Heyting algebra.

M ... residuated lattice, $X \neq \emptyset$... a set M^X ... direct power of M, residuated lattice M^X contains a subalgebra isomorphic to M. $p \in M^X$, $R(p) := \{p(x) : x \in X\}$

A ... a subalgebra of M^X

A ... a functional monadic residuated lattice if

(i) for every $p \in A$ there exist

$$\sup_{M} R(p) = \bigvee R(p), \inf_{M} R(p) = \bigwedge R(p);$$

(ii) for every $p \in A$, the constant functions $\exists p$ and $\forall p$ defined by

$$\exists p(x) := \bigvee R(p), \ \forall p(x) := \bigwedge R(p),$$

for any $x \in X$, belong to A.

If A is a functional residuated lattice and $p, q \in A$, then

 $p < \exists p$: $\forall p < p$: $\exists \forall p = \forall p;$ $\forall \forall p = \forall p$: $\exists (\exists p \odot \exists q) = \exists p \odot \exists q;$ $\forall (p \lor \exists q) = \forall p \lor \exists q;$ $\forall (p \rightarrow \exists q) = \exists p \rightarrow \exists q, \quad \forall (p \rightsquigarrow \exists q) = \exists p \rightsquigarrow \exists q;$ $\forall (\exists p \rightarrow q) = \exists p \rightarrow \forall q, \quad \forall (\exists p \rightsquigarrow q) = \exists p \rightsquigarrow \forall q;$ $\exists (p \odot p) = \exists p \odot \exists p.$

Theorem

If *M* is a residuated lattice, $X \neq \emptyset$ and $A \subseteq M^X$ is a functional monadic residuated lattice, then $(A; \exists, \forall)$ is a monadic residuated lattice.

Jiří Rachůnek, Dana Šalounová (CR)

Quantifiers on residuated lattices

 $A \dots$ residuated lattice, $B \dots$ subalgebra of A

 $B \dots$ relatively complete if for each $a \in A$, the set $\{b \in B : a \leq b\}$ has a least element $\bigwedge_{a \leq b \in B} b$, and the set $\{b \in B : b \leq a\}$ has a greatest element $\bigvee_{a \geq b \in B} b$.

B ... relatively complete subalgebra of A

B ... *m*-relatively complete if for every $a \in A$ and $x \in B$ such that $x \ge a \odot a$ there is $v \in B$ such that $v \ge a$ and $v \odot v \le x$.

If $(A; \exists, \forall)$ is a monadic residuated lattice, then $A_{\exists\forall}$ is an *m*-relatively complete subalgebra of *A*.

Theorem

There is a 1-1 correspondence between monadic residuated lattices and pairs (A, B), where B is an m-relatively complete subalgebra of A.

A ... residuated lattice $\emptyset \neq F \subseteq A \dots$ filter of A if (i) $x, y \in F \implies x \odot y \in F$; (ii) $x \in F, y \in M, x \leq y \Longrightarrow y \in F$.

 $D \subseteq A \dots$ deductive system of A if (iii) $1 \in D$; (iv) $x \in D, x \to y \in D \Longrightarrow y \in D$.

filters = deductive systems

通 ト イヨ ト イヨト

$$\mathcal{F}(A)$$
 ... complete lattice of all filters of A
(A ; \exists , \forall) ... monadic residuted lattice, $F \in \mathcal{F}(A)$
 F ... monadic filter (*m*-filter) of (A ; \exists , \forall) if $x \in F \Longrightarrow \forall x \in F$.
 $\mathcal{F}(A; \exists, \forall)$... complete lattice of all *m*-filters of (A ; \exists, \forall)

If $(A; \exists, \forall)$ is a monadic residuated lattice, then the lattice $\mathcal{F}(A; \exists, \forall)$ is isomorphic to the lattice $\mathcal{F}(A_{\exists\forall})$ of all filters of the residuated lattice $A_{\exists\forall}$.

> < = >