The Euler characteristic of a (monodimensional) polyhedron as a valuation on a vector lattice

Andrea Pedrini
andrea.pedrini@unimi.it
Università degli Studi di Milano
Dipartimento di Informatica e Comunicazione

Algebraic Semantics for Uncertainty and Vagueness
18th - 20th May 2011

Polyhedra

Let $x_{0}, \ldots, x_{n} \in \mathbb{R}^{m}$ be affinely independent points
(i.e. $x_{1}-x_{0}, \ldots, x_{n}-x_{0}$ linearly independent)

An n-simplex is the set of points

$$
\sigma_{n}=\left(x_{0}, \ldots, x_{n}\right)=\left\{\sum_{i=0}^{n} \lambda_{i} x_{i}: \lambda_{i} \in \mathbb{R}, \lambda_{i} \geq 0, \sum_{i=0}^{n} \lambda_{i}=1\right\}
$$

Polyhedra

Let $x_{0}, \ldots, x_{n} \in \mathbb{R}^{m}$ be affinely independent points
(i.e. $x_{1}-x_{0}, \ldots, x_{n}-x_{0}$ linearly independent)

An n-simplex is the set of points

$$
\sigma_{n}=\left(x_{0}, \ldots, x_{n}\right)=\left\{\sum_{i=0}^{n} \lambda_{i} x_{i}: \lambda_{i} \in \mathbb{R}, \lambda_{i} \geq 0, \sum_{i=0}^{n} \lambda_{i}=1\right\}
$$

Polyhedra

Let $x_{0}, \ldots, x_{n} \in \mathbb{R}^{m}$ be affinely independent points
(i.e. $x_{1}-x_{0}, \ldots, x_{n}-x_{0}$ linearly independent)

An n-simplex is the set of points

$$
\sigma_{n}=\left(x_{0}, \ldots, x_{n}\right)=\left\{\sum_{i=0}^{n} \lambda_{i} x_{i}: \lambda_{i} \in \mathbb{R}, \lambda_{i} \geq 0, \sum_{i=0}^{n} \lambda_{i}=1\right\}
$$

A face of σ_{n} is any $\tau_{p}=\left(x_{i_{0}}, \ldots, x_{i_{p}}\right),\left\{x_{i_{0}}, \ldots, x_{i_{p}}\right\} \subseteq\left\{x_{0}, \ldots, x_{n}\right\}$

Polyhedra

A simplicial complex K is a finite set of simplices such that

- if $\sigma_{n} \in K$ and τ_{p} is a face of σ_{n}, then $\tau_{p} \in K$,
- if $\sigma_{n}, \tau_{p} \in K$, then $\sigma_{n} \cap \tau_{p}$ is a common (possibly empty) face of σ_{n} and τ_{p}

Polyhedra

A simplicial complex K is a finite set of simplices such that

- if $\sigma_{n} \in K$ and τ_{p} is a face of σ_{n}, then $\tau_{p} \in K$,
- if $\sigma_{n}, \tau_{p} \in K$, then $\sigma_{n} \cap \tau_{p}$ is a common (possibly empty) face of σ_{n} and τ_{p}

This is a complex

This is not

Polyhedra

A simplicial complex K is a finite set of simplices such that

- if $\sigma_{n} \in K$ and τ_{p} is a face of σ_{n}, then $\tau_{p} \in K$,
- if $\sigma_{n}, \tau_{p} \in K$, then $\sigma_{n} \cap \tau_{p}$ is a common (possibly empty) face of σ_{n} and τ_{p}
A polyhedron is a set P of points of \mathbb{R}^{m} that is the union of the simplices of some simplicial complex K. K is called a triangulation of P.

Polyhedra

A simplicial complex K is a finite set of simplices such that

- if $\sigma_{n} \in K$ and τ_{p} is a face of σ_{n}, then $\tau_{p} \in K$,
- if $\sigma_{n}, \tau_{p} \in K$, then $\sigma_{n} \cap \tau_{p}$ is a common (possibly empty) face of σ_{n} and τ_{p}
A polyhedron is a set P of points of \mathbb{R}^{m} that is the union of the simplices of some simplicial complex K. K is called a triangulation of P.

Two complexes, the same polyhedron

The Euler-Poincaré characteristic

Let K be a triangulation of the polyhedron P, the Euler-Poincare characteristic of P is the number

$$
\chi(P)=\sum_{n=0}^{m}(-1)^{n} \alpha_{n}
$$

where, for all n, α_{n} is the number of n-simplices of K.

The Euler-Poincaré characteristic

Let K be a triangulation of the polyhedron P, the Euler-Poincaré characteristic of P is the number

$$
\chi(P)=\sum_{n=0}^{m}(-1)^{n} \alpha_{n}
$$

where, for all n, α_{n} is the number of n-simplices of K. It is well-defined: two different triangulations of P give the same number $\chi(P)$:

11

14

The Euler-Poincaré characteristic

Let K be a triangulation of the polyhedron P, the Euler-Poincaré characteristic of P is the number

$$
\chi(P)=\sum_{n=0}^{m}(-1)^{n} \alpha_{n}
$$

where, for all n, α_{n} is the number of n-simplices of K. It is well-defined: two different triangulations of P give the same number $\chi(P)$:

11-16

$14-22$

The Euler-Poincaré characteristic

Let K be a triangulation of the polyhedron P, the Euler-Poincaré characteristic of P is the number

$$
\chi(P)=\sum_{n=0}^{m}(-1)^{n} \alpha_{n}
$$

where, for all n, α_{n} is the number of n-simplices of K. It is well-defined: two different triangulations of P give the same number $\chi(P)$:

$11-16+6$

$14-22+10$

The Euler-Poincaré characteristic

Let K be a triangulation of the polyhedron P, the Euler-Poincaré characteristic of P is the number

$$
\chi(P)=\sum_{n=0}^{m}(-1)^{n} \alpha_{n}
$$

where, for all n, α_{n} is the number of n-simplices of K. It is well-defined: two different triangulations of P give the same number $\chi(P)$:

$11-16+6-1=0$

$14-22+10-2=0$

Vector lattices

A (real) vector lattice is an algebra $\mathbf{V}=\left(V,+, \wedge, \vee,\{\lambda\}_{\lambda \in \mathbb{R}}, 0\right)$ such that

- $\left(V,+,\{\lambda\}_{\lambda \in \mathbb{R}}, 0\right)$ is a vector space,
- (V, \wedge, \vee) is a lattice,
- for all $t, v, w \in V, \quad t+(v \wedge w)=(t+v) \wedge(t+w)$,
- for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$, if $\lambda \geq 0$ then $\lambda(v \wedge w)=\lambda v \wedge \lambda w$.

Vector lattices

A (real) vector lattice is an algebra $\mathbf{V}=\left(V,+, \wedge, \vee,\{\lambda\}_{\lambda \in \mathbb{R}}, 0\right)$ such that

- $\left(V,+,\{\lambda\}_{\lambda \in \mathbb{R}}, 0\right)$ is a vector space,
- (V, \wedge, \vee) is a lattice,
- for all $t, v, w \in V, \quad t+(v \wedge w)=(t+v) \wedge(t+w)$,
- for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$,

$$
\text { if } \lambda \geq 0 \text { then } \lambda(v \wedge w)=\lambda v \wedge \lambda w .
$$

The lattice structure induces a partial order (defined as usual):

$$
v \leq w \text { if and only if } v \wedge w=v
$$

Vector lattices

A (real) vector lattice is an algebra $\mathbf{V}=\left(V,+, \wedge, \vee,\{\lambda\}_{\lambda \in \mathbb{R}}, 0\right)$ such that

- $\left(V,+,\{\lambda\}_{\lambda \in \mathbb{R}}, 0\right)$ is a vector space,
- (V, \wedge, \vee) is a lattice,
- for all $t, v, w \in V, \quad t+(v \wedge w)=(t+v) \wedge(t+w)$,
- for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$,

$$
\text { if } \lambda \geq 0 \text { then } \lambda(v \wedge w)=\lambda v \wedge \lambda w .
$$

The lattice structure induces a partial order (defined as usual):

$$
v \leq w \text { if and only if } v \wedge w=v
$$

A strong unit is an element $u \in V$ such that for all $0 \leq v \in V$ there exists a $0 \leq \lambda \in \mathbb{R}$ such that $v \leq \lambda u$.

Vector lattices

A (real) vector lattice is an algebra $\mathbf{V}=\left(V,+, \wedge, \vee,\{\lambda\}_{\lambda \in \mathbb{R}}, 0\right)$ such that

- $\left(V,+,\{\lambda\}_{\lambda \in \mathbb{R}}, 0\right)$ is a vector space,
- (V, \wedge, \vee) is a lattice,
- for all $t, v, w \in V, \quad t+(v \wedge w)=(t+v) \wedge(t+w)$,
- for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$,

$$
\text { if } \lambda \geq 0 \text { then } \lambda(v \wedge w)=\lambda v \wedge \lambda w .
$$

The lattice structure induces a partial order (defined as usual):

$$
v \leq w \text { if and only if } v \wedge w=v
$$

A strong unit is an element $u \in V$ such that for all $0 \leq v \in V$ there exists a $0 \leq \lambda \in \mathbb{R}$ such that $v \leq \lambda u$.
A unital vector lattice is a pair (\mathbf{V}, u), where \mathbf{V} is a vector lattice and u is a strong unit of \mathbf{V}.

Vector lattices

A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is piecewise linear if there are finitely many linear polynomials w_{1}, \ldots, w_{s} such that

$$
\forall x \in \mathbb{R}^{m} \exists i \in\{1, \ldots, s\} \quad: \quad f(x)=w_{i}(x)
$$

Vector lattices

A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is piecewise linear if there are finitely many linear polynomials w_{1}, \ldots, w_{s} such that

$$
\forall x \in \mathbb{R}^{m} \exists i \in\{1, \ldots, s\}: f(x)=w_{i}(x)
$$

Let P a polyhedron in \mathbb{R}^{m}.

$$
\begin{gathered}
F(P)=\{f: P \rightarrow \mathbb{R} \text { continuous and piecewise linear }\} \\
\nabla(P)=\left(F(P),+, \min , \max ,\{\lambda\}_{\lambda \in \mathbb{R}}, 0\right)
\end{gathered}
$$

$(\nabla(P), 1)$ is a unital vector lattice.

Vector lattices

A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is piecewise linear if there are finitely many linear polynomials w_{1}, \ldots, w_{s} such that

$$
\forall x \in \mathbb{R}^{m} \exists i \in\{1, \ldots, s\}: f(x)=w_{i}(x)
$$

Let P a polyhedron in \mathbb{R}^{m}.

$$
\begin{gathered}
F(P)=\{f: P \rightarrow \mathbb{R} \text { continuous and piecewise linear }\} \\
\nabla(P)=\left(F(P),+, \min , \max ,\{\lambda\}_{\lambda \in \mathbb{R}}, 0\right)
\end{gathered}
$$

$(\nabla(P), 1)$ is a unital vector lattice.
Baker-Beynon duality: each finitely presented (\mathbf{V}, u) is isomorphic to $(\nabla(P), 1)$, for some P in some Euclidean space \mathbb{R}^{m}.

Vector lattices

A triangulation K of the polyhedron P linearizes $f \in \nabla(P)$ if f is linear on each simplex of K.

Vector lattices

A triangulation K of the polyhedron P linearizes $f \in \nabla(P)$ if f is linear on each simplex of K.
A vl-Schauder hat is an $h \in \nabla(P)$ such that there is a triangulation K_{h} of P linearizing h and a 0 -simplex \bar{x} of K_{h} such that $h(\bar{x})=1$ and $h(x)=0$ for any other 0-simplices x of K_{h}.

Vector lattices

A triangulation K of the polyhedron P linearizes $f \in \nabla(P)$ if f is linear on each simplex of K.
A vl-Schauder hat is an $h \in \nabla(P)$ such that there is a triangulation K_{h} of P linearizing h and a 0 -simplex \bar{x} of K_{h} such that $h(\bar{x})=1$ and $h(x)=0$ for any other 0-simplices x of K_{h}.
The vl-Schauder hats of K is the set of vl-Schauder hats $\left\{h_{i}\right\}$ such that $h_{i}\left(x_{i}\right)=1$ and $h_{i}\left(x_{j}\right)=0$, where x_{0}, \ldots, x_{n} are the 0 -simplices of K.

Vector lattices

A triangulation K of the polyhedron P linearizes $f \in \nabla(P)$ if f is linear on each simplex of K.
A vl-Schauder hat is an $h \in \nabla(P)$ such that there is a triangulation K_{h} of P linearizing h and a 0 -simplex \bar{x} of K_{h} such that $h(\bar{x})=1$ and $h(x)=0$ for any other 0-simplices x of K_{h}.
The vl-Schauder hats of K is the set of vl-Schauder hats $\left\{h_{i}\right\}$ such that $h_{i}\left(x_{i}\right)=1$ and $h_{i}\left(x_{j}\right)=0$, where x_{0}, \ldots, x_{n} are the 0 -simplices of K.
Each $f \in \nabla(P)$ can be seen as a sum $\sum_{i=0}^{n} a_{i} h_{i}$ (where $a_{i} \in \mathbb{R}$) of the vl-Schauder hats h_{0}, \ldots, h_{n} of a triangulation K_{f} linearizing f.

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing $|f|$;

$$
Z_{K, f}=\left\{\sigma \in K:\left.f\right|_{\sigma} \equiv 0\right\} .
$$

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing $|f|$;

$$
Z_{K, f}=\left\{\sigma \in K:\left.f\right|_{\sigma} \equiv 0\right\}
$$

The supplement $S_{K, f}$ of f in K is an "inner approximation" of the support of f :

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing $|f|$;

$$
Z_{K, f}=\left\{\sigma \in K:\left.f\right|_{\sigma} \equiv 0\right\}
$$

The supplement $S_{K, f}$ of f in K is an "inner approximation" of the support of f :

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing $|f|$;

$$
Z_{K, f}=\left\{\sigma \in K:\left.f\right|_{\sigma} \equiv 0\right\}
$$

The supplement $S_{K, f}$ of f in K is an "inner approximation" of the support of f :

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing $|f|$;

$$
Z_{K, f}=\left\{\sigma \in K:\left.f\right|_{\sigma} \equiv 0\right\}
$$

The supplement $S_{K, f}$ of f in K is an "inner approximation" of the support of f :

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing $|f|$;

$$
Z_{K, f}=\left\{\sigma \in K:\left.f\right|_{\sigma} \equiv 0\right\}
$$

The supplement $S_{K, f}$ of f in K is an "inner approximation" of the support of f :

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing $|f|$;

$$
Z_{K, f}=\left\{\sigma \in K:\left.f\right|_{\sigma} \equiv 0\right\}
$$

The supplement $S_{K, f}$ of f in K is an "inner approximation" of the support of f :

The Euler-Poincaré characteristic of f :

$$
\chi(f)=\chi(\operatorname{supp}(f))=\chi\left(S_{K, f}\right)
$$

(it does not depend on the choice of K).

Valuations

A vl-valuation on $(\nabla(P), 1)$ is a function $\nu: \nabla(P) \rightarrow \mathbb{R}$ such that:

- $\nu(0)=0$,
- for all $f, g \in \nabla(P), \nu(f \vee g)=\nu(f)+\nu(g)-\nu(f \wedge g)$,
- for all $0 \leq f, g \in \nabla(P), \nu(f+g)=\nu(f \vee g)$,
- for all $0 \leq f, g \in \nabla(P)$, if $f \wedge g=0$ then

$$
\nu(f-g)=\nu(f)-\nu(g)
$$

Characterization Theorem

Theorem

Let P be a polyhedron in \mathbb{R}^{m}, for some integer $m \geq 1$, and let $(\nabla(P), 1)$ be the finitely presented unital vector lattice of real-valued piecewise linear functions on P.
Then Euler-Poincaré characteristic is the unique vl-valuation

$$
\chi: \nabla(P) \rightarrow \mathbb{R}
$$

that assigns the value 1 to each vl-Schauder hat in $\nabla(P)$.
Moreover, the number $\chi(1)$ is the Euler-Poincaré characteristic of the polyhedron P.

A monodimensional hat

Characterization Theorem

Theorem

Let P be a polyhedron in \mathbb{R}^{m}, for some integer $m \geq 1$, and let $(\nabla(P), 1)$ be the finitely presented unital vector lattice of real-valued piecewise linear functions on P.
Then Euler-Poincaré characteristic is the unique vl-valuation

$$
\chi: \nabla(P) \rightarrow \mathbb{R}
$$

that assigns the value 1 to each vl-Schauder hat in $\nabla(P)$.
Moreover, the number $\chi(1)$ is the Euler-Poincaré characteristic of the polyhedron P.

$$
\chi(1)=\chi(P)
$$

$$
\chi(1)=\chi(P)
$$

$$
\chi(1)=\chi(P)
$$

Characterization Theorem

Theorem

Let P be a polyhedron in \mathbb{R}^{m}, for some integer $m \geq 1$, and let $(\nabla(P), 1)$ be the finitely presented unital vector lattice of real-valued piecewise linear functions on P.
Then Euler-Poincaré characteristic is the unique vl-valuation

$$
\chi: \nabla(P) \rightarrow \mathbb{R}
$$

that assigns the value 1 to each vl-Schauder hat in $\nabla(P)$.
Moreover, the number $\chi(1)$ is the Euler-Poincaré characteristic of the polyhedron P.

Thank you for your attention.

