The Euler characteristic of a (monodimensional) polyhedron as a valuation on a vector lattice

Andrea Pedrini andrea.pedrini@unimi.it

Università degli Studi di Milano Dipartimento di Informatica e Comunicazione

Algebraic Semantics for Uncertainty and Vagueness 18th - 20th May 2011

Let $x_0, \ldots, x_n \in \mathbb{R}^m$ be affinely independent points (i.e. $x_1 - x_0, \ldots, x_n - x_0$ linearly independent)

An *n*-simplex is the set of points

$$\sigma_n = (x_0, \ldots, x_n) = \left\{ \sum_{i=0}^n \lambda_i x_i : \lambda_i \in \mathbb{R}, \ \lambda_i \ge 0, \ \sum_{i=0}^n \lambda_i = 1 \right\}$$

Let $x_0, \ldots, x_n \in \mathbb{R}^m$ be affinely independent points (i.e. $x_1 - x_0, \ldots, x_n - x_0$ linearly independent)

An *n*-simplex is the set of points

$$\sigma_n = (x_0, \ldots, x_n) = \left\{ \sum_{i=0}^n \lambda_i x_i : \lambda_i \in \mathbb{R}, \ \lambda_i \ge 0, \ \sum_{i=0}^n \lambda_i = 1 \right\}$$

Let $x_0, \ldots, x_n \in \mathbb{R}^m$ be affinely independent points (i.e. $x_1 - x_0, \ldots, x_n - x_0$ linearly independent)

An *n*-simplex is the set of points

$$\sigma_n = (x_0, \ldots, x_n) = \left\{ \sum_{i=0}^n \lambda_i x_i : \lambda_i \in \mathbb{R}, \ \lambda_i \ge 0, \ \sum_{i=0}^n \lambda_i = 1 \right\}$$

A face of σ_n is any $\tau_p = (x_{i_0}, \dots, x_{i_p}), \{x_{i_0}, \dots, x_{i_p}\} \subseteq \{x_0, \dots, x_n\}$

A simplicial complex K is a finite set of simplices such that

- if $\sigma_n \in K$ and τ_p is a face of σ_n , then $\tau_p \in K$,
- if σ_n, τ_p ∈ K, then σ_n ∩ τ_p is a common (possibly empty) face of σ_n and τ_p

A simplicial complex K is a finite set of simplices such that

- if $\sigma_n \in K$ and τ_p is a face of σ_n , then $\tau_p \in K$,
- if σ_n, τ_p ∈ K, then σ_n ∩ τ_p is a common (possibly empty) face of σ_n and τ_p

A simplicial complex K is a finite set of simplices such that

- if $\sigma_n \in K$ and τ_p is a face of σ_n , then $\tau_p \in K$,
- if σ_n, τ_p ∈ K, then σ_n ∩ τ_p is a common (possibly empty) face of σ_n and τ_p

A polyhedron is a set P of points of \mathbb{R}^m that is the union of the simplices of some simplicial complex K.

K is called a triangulation of P.

A simplicial complex K is a finite set of simplices such that

- if $\sigma_n \in K$ and τ_p is a face of σ_n , then $\tau_p \in K$,
- if σ_n, τ_p ∈ K, then σ_n ∩ τ_p is a common (possibly empty) face of σ_n and τ_p

A polyhedron is a set P of points of \mathbb{R}^m that is the union of the simplices of some simplicial complex K.

K is called a triangulation of P.

Polyhedra The Euler-Poincaré characteristic

The Euler-Poincaré characteristic

Let K be a triangulation of the polyhedron P, the Euler-Poincaré characteristic of P is the number

$$\chi(P) = \sum_{n=0}^{m} (-1)^n \alpha_n$$

where, for all n, α_n is the number of n-simplices of K.

Polyhedra The Euler-Poincaré characteristic

The Euler-Poincaré characteristic

Let K be a triangulation of the polyhedron P, the Euler-Poincaré characteristic of P is the number

$$\chi(P) = \sum_{n=0}^{m} (-1)^n \alpha_n$$

where, for all *n*, α_n is the number of *n*-simplices of *K*.

Polyhedra The Euler-Poincaré characteristic

The Euler-Poincaré characteristic

Let K be a triangulation of the polyhedron P, the Euler-Poincaré characteristic of P is the number

$$\chi(P) = \sum_{n=0}^{m} (-1)^n \alpha_n$$

where, for all *n*, α_n is the number of *n*-simplices of *K*.

Polyhedra The Euler-Poincaré characteristic

The Euler-Poincaré characteristic

Let K be a triangulation of the polyhedron P, the Euler-Poincaré characteristic of P is the number

$$\chi(P) = \sum_{n=0}^{m} (-1)^n \alpha_n$$

where, for all *n*, α_n is the number of *n*-simplices of *K*.

Polyhedra The Euler-Poincaré characteristic

The Euler-Poincaré characteristic

Let K be a triangulation of the polyhedron P, the Euler-Poincaré characteristic of P is the number

$$\chi(P) = \sum_{n=0}^{m} (-1)^n \alpha_n$$

where, for all *n*, α_n is the number of *n*-simplices of *K*.

Vector lattices

A (real) vector lattice is an algebra $\mathbf{V} = (V, +, \wedge, \lor, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ such that

- $(V, +, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ is a vector space,
- (V, \land, \lor) is a lattice,
- ► for all $t, v, w \in V$, $t + (v \land w) = (t + v) \land (t + w)$,

▶ for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$, if $\lambda \ge 0$ then $\lambda(v \land w) = \lambda v \land \lambda w$.

Vector lattices

A (real) vector lattice is an algebra $\mathbf{V} = (V, +, \wedge, \vee, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ such that

- $(V, +, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ is a vector space,
- (V, \land, \lor) is a lattice,

► for all
$$t, v, w \in V$$
, $t + (v \land w) = (t + v) \land (t + w)$,

▶ for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$, if $\lambda \ge 0$ then $\lambda(v \land w) = \lambda v \land \lambda w$.

The lattice structure induces a partial order (defined as usual):

$$v \leq w$$
 if and only if $v \wedge w = v$.

Vector lattices

A (real) vector lattice is an algebra $\mathbf{V} = (V, +, \wedge, \lor, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ such that

- $(V, +, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ is a vector space,
- (V, \land, \lor) is a lattice,

► for all
$$t, v, w \in V$$
, $t + (v \land w) = (t + v) \land (t + w)$,

▶ for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$, if $\lambda \ge 0$ then $\lambda(v \land w) = \lambda v \land \lambda w$.

The lattice structure induces a partial order (defined as usual):

$$v \leq w$$
 if and only if $v \wedge w = v$.

A strong unit is an element $u \in V$ such that for all $0 \le v \in V$ there exists a $0 \le \lambda \in \mathbb{R}$ such that $v \le \lambda u$.

Vector lattices

A (real) vector lattice is an algebra $\mathbf{V} = (V, +, \wedge, \lor, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ such that

- $(V, +, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ is a vector space,
- (V, \land, \lor) is a lattice,

► for all
$$t, v, w \in V$$
, $t + (v \land w) = (t + v) \land (t + w)$,

▶ for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$, if $\lambda \ge 0$ then $\lambda(v \land w) = \lambda v \land \lambda w$.

The lattice structure induces a partial order (defined as usual):

$$v \leq w$$
 if and only if $v \wedge w = v$.

A strong unit is an element $u \in V$ such that for all $0 \le v \in V$ there exists a $0 \le \lambda \in \mathbb{R}$ such that $v \le \lambda u$. A unital vector lattice is a pair (\mathbf{V}, u) , where \mathbf{V} is a vector lattice and u is a strong unit of \mathbf{V} .

A function $f : \mathbb{R}^m \to \mathbb{R}^n$ is piecewise linear if there are finitely many linear polynomials w_1, \ldots, w_s such that

$$\forall x \in \mathbb{R}^m \exists i \in \{1, \ldots, s\} : f(x) = w_i(x).$$

A function $f : \mathbb{R}^m \to \mathbb{R}^n$ is piecewise linear if there are finitely many linear polynomials w_1, \ldots, w_s such that

$$\forall x \in \mathbb{R}^m \exists i \in \{1, \ldots, s\} : f(x) = w_i(x).$$

Let *P* a polyhedron in \mathbb{R}^m .

 $F(P) = \{f : P \to \mathbb{R} \text{ continuous and piecewise linear}\}$ $\nabla(P) = (F(P), +, \min, \max, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ $(\nabla(P), 1) \text{ is a unital vector lattice.}$

A function $f : \mathbb{R}^m \to \mathbb{R}^n$ is piecewise linear if there are finitely many linear polynomials w_1, \ldots, w_s such that

$$\forall x \in \mathbb{R}^m \exists i \in \{1, \ldots, s\} : f(x) = w_i(x).$$

Let *P* a polyhedron in \mathbb{R}^m .

 $F(P) = \{f : P \to \mathbb{R} \text{ continuous and piecewise linear}\}$ $\nabla(P) = (F(P), +, \min, \max, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$

 $(\nabla(P), 1)$ is a unital vector lattice.

Baker-Beynon duality: each finitely presented (\mathbf{V}, u) is isomorphic to $(\nabla(P), 1)$, for some P in some Euclidean space \mathbb{R}^m .

A triangulation K of the polyhedron P linearizes $f \in \nabla(P)$ if f is linear on each simplex of K.

A triangulation K of the polyhedron P linearizes $f \in \nabla(P)$ if f is linear on each simplex of K.

A vl-Schauder hat is an $h \in \nabla(P)$ such that there is a triangulation K_h of P linearizing h and a 0-simplex \bar{x} of K_h such that $h(\bar{x}) = 1$ and h(x) = 0 for any other 0-simplices x of K_h .

A triangulation K of the polyhedron P linearizes $f \in \nabla(P)$ if f is linear on each simplex of K.

A vl-Schauder hat is an $h \in \nabla(P)$ such that there is a triangulation K_h of P linearizing h and a 0-simplex \bar{x} of K_h such that $h(\bar{x}) = 1$ and h(x) = 0 for any other 0-simplices x of K_h . The vl-Schauder hats of K is the set of vl-Schauder hats $\{h_i\}$ such that $h_i(x_i) = 1$ and $h_i(x_j) = 0$, where x_0, \ldots, x_n are the 0-simplices of K.

A triangulation K of the polyhedron P linearizes $f \in \nabla(P)$ if f is linear on each simplex of K.

A vl-Schauder hat is an $h \in \nabla(P)$ such that there is a triangulation K_h of P linearizing h and a 0-simplex \bar{x} of K_h such that $h(\bar{x}) = 1$ and h(x) = 0 for any other 0-simplices x of K_h . The vl-Schauder hats of K is the set of vl-Schauder hats $\{h_i\}$ such that $h_i(x_i) = 1$ and $h_i(x_j) = 0$, where x_0, \ldots, x_n are the 0-simplices of K.

Each $f \in \nabla(P)$ can be seen as a sum $\sum_{i=0}^{n} a_i h_i$ (where $a_i \in \mathbb{R}$) of the vl-Schauder hats h_0, \ldots, h_n of a triangulation K_f linearizing f.

The Euler-Poincaré characteristic Vector lattices The Main Result Definition Persentation vI-Schauder hats The Euler-Poincaré characteristic of a function

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing |f|;

$$Z_{K,f} = \{ \sigma \in K : f|_{\sigma} \equiv 0 \}.$$

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing |f|;

$$Z_{K,f} = \{ \sigma \in K : f|_{\sigma} \equiv 0 \}.$$

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing |f|;

$$Z_{K,f} = \{ \sigma \in K : f|_{\sigma} \equiv 0 \}.$$

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing |f|;

$$Z_{K,f} = \{ \sigma \in K : f|_{\sigma} \equiv 0 \}.$$

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing |f|;

$$Z_{K,f} = \{ \sigma \in K : f|_{\sigma} \equiv 0 \}.$$

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing |f|;

$$Z_{K,f} = \{ \sigma \in K : f|_{\sigma} \equiv 0 \}.$$

The Euler-Poincaré characteristic Vector lattices The Main Result Definition Representation vl-Schauder hats The Euler-Poincaré characteristic of a function

The Euler-Poincaré characteristic of a function

Let K a triangulation linearizing |f|;

$$Z_{K,f} = \{ \sigma \in K : f|_{\sigma} \equiv 0 \}.$$

The supplement $S_{K,f}$ of f in K is an "inner approximation" of the support of f:

The Euler-Poincaré characteristic of *f* :

$$\chi(f) = \chi(supp(f)) = \chi(S_{K,f})$$

(it does not depend on the choice of K).

Valuations

A vl-valuation on $(\nabla(P), 1)$ is a function $\nu : \nabla(P) \to \mathbb{R}$ such that:

- ▶ for all $f,g \in \nabla(P)$, $\nu(f \lor g) = \nu(f) + \nu(g) \nu(f \land g)$,
- ▶ for all $0 \le f, g \in \nabla(P)$, $\nu(f + g) = \nu(f \lor g)$,

▶ for all
$$0 \le f, g \in \nabla(P)$$
, if $f \land g = 0$ then $\nu(f - g) = \nu(f) - \nu(g)$.

Valuations Characterization Theorem

Characterization Theorem

Theorem

Let P be a polyhedron in \mathbb{R}^m , for some integer $m \ge 1$, and let $(\nabla(P), 1)$ be the finitely presented unital vector lattice of real-valued piecewise linear functions on P.

Then Euler-Poincaré characteristic is the unique vl-valuation

 $\chi : \nabla(P) \to \mathbb{R}$

that assigns the value 1 to each vl-Schauder hat in $\nabla(P)$.

Moreover, the number $\chi(1)$ is the Euler-Poincaré characteristic of the polyhedron P.

Valuations Characterization Theorem

Valuations Characterization Theorem

Characterization Theorem

Theorem

Let P be a polyhedron in \mathbb{R}^m , for some integer $m \ge 1$, and let $(\nabla(P), 1)$ be the finitely presented unital vector lattice of real-valued piecewise linear functions on P.

Then Euler-Poincaré characteristic is the unique vl-valuation

 $\chi : \nabla(P) \to \mathbb{R}$

that assigns the value 1 to each vl-Schauder hat in $\nabla(P)$.

Moreover, the number $\chi(1)$ is the Euler-Poincaré characteristic of the polyhedron P.

Valuations Characterization Theorem

$\chi(1)=\chi(P)$

Valuations Characterization Theorem

Valuations Characterization Theorem

$\chi(1) = \chi(P)$

Valuations Characterization Theorem

Characterization Theorem

Theorem

Let P be a polyhedron in \mathbb{R}^m , for some integer $m \ge 1$, and let $(\nabla(P), 1)$ be the finitely presented unital vector lattice of real-valued piecewise linear functions on P.

Then Euler-Poincaré characteristic is the unique vl-valuation

 $\chi : \nabla(P) \to \mathbb{R}$

that assigns the value 1 to each vl-Schauder hat in $\nabla(P)$.

Moreover, the number $\chi(1)$ is the Euler-Poincaré characteristic of the polyhedron P.

Valuations Characterization Theorem

Thank you for your attention.