
Quantifier elimination, amalgamation,

deductive interpolation and Craig

interpolation in many-valued logic

Franco Montagna, first part in collaboration with Tommaso

Cortonesi and Enrico Marchioni



Definition. A logic L has the deductive interpolation property (DIP) if for
any set Σ of formulas and for every formula φ, if Σ `L φ, then there is a
formula γ (called a deductive interpolant of Σ and φ), such that Σ `L γ,
γ `L φ and all variables in γ are common to Σ and to φ.

A logic L has the Craig interpolation property (CIP) if for all formulas ψ, φ,
if L ` φ → ψ, then there is a formula γ, (called a Craig interpolant of φ and
ψ) such that L ` φ → γ, L `L γ → ψ and all variables in γ are common to ψ
and to φ.



Example. In classical logic, we have ` (p ∧ q) → (q ∨ r). A Craig interpolant
of p ∧ q and q ∨ r is given by q. q is also a deductive interpolant.

For logics with the deduction theorem, CIP and DIP are equivalent. In fuzzy
logic, CIP implies DIP but the converse does not hold:

 Lukasiewicz logic and product logic have DIP, but not CIP. If φ = p∧ (p→ q)
and ψ = r ∨ (r → q), then φ → ψ is provable in any fuzzy logic, but it does
not have a Craig interpolant in  Lulasiewicz or in product logic.

Among the most important fuzzy logics, only Gödel logic is known to have
CIP.



Definition. A V-formation in a class K of algebras of the same type is a
system (A,B,C, i, j) where A,B,C ∈ K and i, j are embeddings of A into B
and into C, respectively.

B C
i ↖ ↗j

A

An amalgam in K of a V-formation (A,B,C, i, j) is a triplet (D, h, k) where
D ∈ K and h, k are embeddings of B and C, respectively, into D such that the
diagram

D
h ↗ ↖k

B C
i ↖ ↗j

A

commutes.

A class K has the amalgamation property (AP) if any V-formation in K has
an amalgam in K.



AP implies DIP (in fact, it implies a stronger property, namely, Robinson’s
property). In turn, AP is implied by quantifier elimination.

A first-order theory T has quantifier elimination (QE) if every formula φ(x1, . . . , xn)
is provably equivalent in T to a quantifier free formula ψ(x1, . . . , xn).

We now present two theorems, the first one is well-known, the second one is
a result by Metcalfe, Tsinakis and myself, to (dis)appear.

Theorem 1. If T has QE, then the class of all models of T∀, the universal
fragment of T , has AP.

Theorem 2. Let V be a variety of representable commutative residuated
lattices. If Vlin, the class of all chains in V, has AP, then V has AP.

From the theorems above we derive the following:



Theorem 3. Let V a variety of commutative and representable residuated
lattices. Suppose that some subclass K of Vlin, enjoys the following properties:

(1) K is elementary (first-order axiomatizable).

(2) Th(K) has QE.

(3) Every algebra in Vlin can be extended to an algebra in K.

Then V has AP.



Didactical examples. (1) The class of all divisible abelian o-groups has QE.
Every abelian o-group embeds into a divisible abelian o-group. Hence: The
class of commutative `-groups has AP.

(2) Every MV-chain embeds into a divisible MV-chain and divisible MV-
chains have QE. Hence, the class of MV-algebras has AP, see [MuAP] and
 Lukasiewicz logic has DIP. A similar result holds for the class of product
algebras.

(3) The class of densely ordered Gödel chains has QE. Every Gödel chain
embeds into a densely ordered Gödel chain. Hence: The class of Gödel
algebras has AP and Gödel logic has DIP. Since Gödel logic has the deduction
theorem, it also has CIP.



What about BL-algebras?

By Theorem 2, we can restrict ourselves to BL-chains.

Wanted: a class of BL-chains K such that:

(1) Th(K) has QE.

(2) Every BL-chain embeds into an algebra from K.



In [CMM], we found two examples of such classes, namely:

(1) The class of strongly dense BL-chains, that is, the class of BL-chains
which are ordinal sums of divisible MV-algebras and the order of components
is dense with minimum and without maximum.

(2) The class of BL-chains which are ordinal sums of divisible MV-algebras
and the order of components is discrete with minimum and without maximum.
In this second case, in order to have QE we need to add two new primitives:
the function s associating to every element a < 1 the minimum idempotent
strictly greater than a, and the function p associating to every a not in the
first component the minimum of the component immediately below the one
a belongs to.



The class K of strongly dense BL-algebras has QE and every BL-chain A
embeds into a chain in K. Indeed, embed the order I of components of A
into a dense order J. Then replace every component Ai of A by a divisible
MV-algebra Bi in which Ai embeds, and for every j ∈ J \ I add a divisible
MV-chain as a new component. Therefore:

Theorem 4. The class of BL-algebras has AP, and BL has DIP.



Craig interpolation. We have seen that none of  Lukasiewicz logic, product
logic or BL has CIP. Apart from Gödel logic (and classical logic) the most
interesting fuzzy logics do not have CIP. For instance, Nilpotent minimum
NM, the logic induced by the t-norm x∗y = 0 if x+y ≤ 1 and x∗y = min{x, y}
otherwise, has AP, but not CIP.

In [BV], it is shown that both divisible  Lukasiewicz logic  Ldiv and product
logic with nth roots Πroot have CIP. To prove this, they use an extension of
 Ldiv (resp., of Πroot) with propositional quantifiers, and they show that such
extensions have QE. Thus a Craig interpolant of φ(P,Q) and ψ(Q,R), where
P,Q,R disjoint sequences of variables, is obtained by eliminating quantifiers
in either ∃P (φ(P,Q), or in ∀R(ψ(Q,R). Such interpolants are called uniform
(the first one only depends on φ and the second one only depends on ψ).



 Ldiv and Πroot are conservative extensions of  Land of Π, respectively. Hence,
the following problem arises:

Problem. Given a fuzzy logic L which does not satisfy CIP, find a conservative
extension of it which satisfies CIP.

The argument used by Baaz and Veith shows that for our problem it suffices
to find a conservative extension L’ of L with such that:

(a) The extension QL’ of L’ by propositional quantifiers has QE.

(b) QL’ is a conservative extension of L. (Warning: it is possible that L’ is
conservative over L, but QL’ is not conservative over L’).



Our method only works for ∆-core fuzzy logics, roughly, for logics having the
Baaz-Monteiro operator ∆.

Then under suitable additional assumptions, it is possible to interpret QL’
into the first order theory, Th(L′), of all L’-chains and viceversa in such a way
that Th(L′) has QE iff QL’ has QE.

In this way, we arrive to the following general theorem:



Theorem 5. Let L’ be a conservative extension with ∆ of a fuzzy logic L,
and let L′ be the class of L’-chains. Suppose that:
(a) Th(L′) is axiomatizable by universal formulas and has quantifier elimina-
tion.
(b) L′ has a model A which is complete with respect to the order and a prime
model B. Then:
(1) QL’ has QE.
(2) QL’ is conservative over L.
(3) L’ has CIP.



Applications. Any finitely valued fuzzy logic falls under the scope of The-
orem 5 . If we add a constant for each truth value and the Baaz-Monteiro
operator ∆, we obtain a conservative extension with CIP. But this example
is straightforward, and ∆ is not necessary in this case.

A more interesting example is the following: let BL’ be the logic of BL-
chains which are ordinal sums of divisible MV-algebras with a discrete order
of components added with operators s and p (s(x) is the minimum idempotent
strictly above x and p(x) is the minimum of the component immediately below
the component x belongs to). Then BL’ satisfies the conditions of Theorem
5. Hence, BL’ has CIP and is conservative over BL.

A third example is the following: NM, the Nilpotent Minimum logic, is strongly
complete wrt the class of all discretely ordered NM-chains. Now let us add to
NM a symbol 1

2
for the fixpoint of the negation, and two operators s and p such

that, if x < 1, then s(x) is the minimum element > x and if 0 < x < 1, then
p(x) is the greatest element strictly below x). In this way we obtain a logic
L’ which satisfies all assumptions of Theorem 5. Hence, L’ is a conservative
extension of NM which satisfies CIP.
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Nel caso dei reticoli residuati commutativi l’amalgama è equivalente alla
proprietà di Robinson:

Una varietà V di algebre universali ha la proprietà di Robinson se dati due
insiemi Π e Σ di equazioni e un’equazione ε, se valgono le :

(1) V ar(ε) ∩ V ar(Π) ⊆ V ar(Σ).

(2) Per ogni identità δ nelle variabili comuni a Π e a Σ si ha Σ |=V δ sse
Π |=V δ.

(3) Π,Σ |= ε,

allora Σ |= ε.


