On o-Minimal MV-CHAINS

Enrico Marchioni

Artificial Intelligence Research Institute (IIIA - CSIC), Spain enrico@iiia.csic.es

Algebraic Semantics for Uncertainty and Vagueness
Salerno, May 2011
(1) O-Minimality
(2) MV-chains and O-minimality
(3) Perfect MV-chains
(4) Local MV-chains of finite rank
(5) Imaginary Elements

O-minimality [Pillay, Steinhorn (1986)]

- Let L be a finitary first-order language, and \mathbf{M} an L-structure.

O-minimality [Pillay, Steinhorn (1986)]

- Let L be a finitary first-order language, and \mathbf{M} an L-structure.
- A set of n-tuples $A \subseteq M^{n}$ is said to be parametrically definable if there is some L-formula $\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$ and $b_{1}, \ldots, b_{k} \in M$ so that $A=\left\{\left(a_{1}, \ldots, a_{n}\right): \mathbf{M} \mid=\phi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}\right)\right\}$.

O-minimality [Pillay, Steinhorn (1986)]

- Let L be a finitary first-order language, and \mathbf{M} an L-structure.
- A set of n-tuples $A \subseteq M^{n}$ is said to be parametrically definable if there is some L-formula $\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$ and $b_{1}, \ldots, b_{k} \in M$ so that $A=\left\{\left(a_{1}, \ldots, a_{n}\right): \mathbf{M} \mid=\phi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}\right)\right\}$.
- Given a totally ordered structure \mathbf{M}, we call an interval any parametrically definable subset that is either on open, closed, half-open interval, or a point.

O-minimality [Pillay, Steinhorn (1986)]

- Let L be a finitary first-order language, and \mathbf{M} an L-structure.
- A set of n-tuples $A \subseteq M^{n}$ is said to be parametrically definable if there is some L-formula $\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$ and $b_{1}, \ldots, b_{k} \in M$ so that $A=\left\{\left(a_{1}, \ldots, a_{n}\right): \mathbf{M} \mid=\phi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}\right)\right\}$.
- Given a totally ordered structure \mathbf{M}, we call an interval any parametrically definable subset that is either on open, closed, half-open interval, or a point.
- A linearly ordered structure \mathbf{M} is said to be o-minimal if any parametrically definable subset of M is a finite union of intervals in M.

O-minimality [Pillay, Steinhorn (1986)]

- Let L be a finitary first-order language, and \mathbf{M} an L-structure.
- A set of n-tuples $A \subseteq M^{n}$ is said to be parametrically definable if there is some L-formula $\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$ and $b_{1}, \ldots, b_{k} \in M$ so that $A=\left\{\left(a_{1}, \ldots, a_{n}\right): \mathbf{M} \mid=\phi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}\right)\right\}$.
- Given a totally ordered structure \mathbf{M}, we call an interval any parametrically definable subset that is either on open, closed, half-open interval, or a point.
- A linearly ordered structure \mathbf{M} is said to be o-minimal if any parametrically definable subset of M is a finite union of intervals in M.
- A first-order theory T is said to be o-minimal if every model of T is o-minimal.

Examples

(i) a discrete linear order with or without endpoints in the language $L=\langle\langle \rangle$,

Examples

(i) a discrete linear order with or without endpoints in the language $L=\langle\langle \rangle$,
(ii) a dense linear order with or without endpoints in the language $L=\langle<\rangle$,

Examples

(i) a discrete linear order with or without endpoints in the language $L=\langle\langle \rangle$,
(ii) a dense linear order with or without endpoints in the language $L=\langle<\rangle$,
(iii) a real closed field in the language $L=\langle+, \cdot, 0,1,<\rangle$.

Ordered Abelian Groups

- Any divisible ordered abelian group in the language $L=\langle+,-, 0,\langle \rangle$ is o-minimal

Ordered Abelian Groups

- Any divisible ordered abelian group in the language $L=\langle+,-, 0,\langle \rangle$ is o-minimal
- Indeed, the theory of ordered divisible abelian groups eliminates quantifiers in $\langle+,-, 0,<\rangle$, and definable sets over the domain of each model are finite union of intervals.

Ordered Abelian Groups

- Any divisible ordered abelian group in the language $L=\langle+,-, 0,\langle \rangle$ is o-minimal
- Indeed, the theory of ordered divisible abelian groups eliminates quantifiers in $\langle+,-, 0,\langle \rangle$, and definable sets over the domain of each model are finite union of intervals.
- Any o-minimal ordered abelian group is also divisible [Pillay, Steinhorn (1986)].

Ordered Abelian Groups

- Any divisible ordered abelian group in the language $L=\langle+,-, 0,\langle \rangle$ is o-minimal
- Indeed, the theory of ordered divisible abelian groups eliminates quantifiers in $\langle+,-, 0,<\rangle$, and definable sets over the domain of each model are finite union of intervals.
- Any o-minimal ordered abelian group is also divisible [Pillay, Steinhorn (1986)].
- Indeed, the only definable non-trivial subgroup of an o-minimal ordered abelian group \mathbf{G} is \mathbf{G} itself.

Ordered Abelian Groups

- Any divisible ordered abelian group in the language $L=\langle+,-, 0,\langle \rangle$ is o-minimal
- Indeed, the theory of ordered divisible abelian groups eliminates quantifiers in $\langle+,-, 0,<\rangle$, and definable sets over the domain of each model are finite union of intervals.
- Any o-minimal ordered abelian group is also divisible [Pillay, Steinhorn (1986)].
- Indeed, the only definable non-trivial subgroup of an o-minimal ordered abelian group \mathbf{G} is \mathbf{G} itself.
- Moreover, in any o-minimal ordered abelian group it is possible to define a divisible group.

Ordered Abelian Groups

- Any divisible ordered abelian group in the language $L=\langle+,-, 0,<\rangle$ is o-minimal
- Indeed, the theory of ordered divisible abelian groups eliminates quantifiers in $\langle+,-, 0,<\rangle$, and definable sets over the domain of each model are finite union of intervals.
- Any o-minimal ordered abelian group is also divisible [Pillay, Steinhorn (1986)].
- Indeed, the only definable non-trivial subgroup of an o-minimal ordered abelian group \mathbf{G} is \mathbf{G} itself.
- Moreover, in any o-minimal ordered abelian group it is possible to define a divisible group.
- We have that an ordered abelian group is divisible IFF it is o-minimal IFF its theory admits QE [Pillay, Steinhorn (1986); Lenski (1989)].

O-minimality and Quantifier Elimination

- O-minimality and quantifier elimination do not imply each other.

O-minimality and Quantifier Elimination

- O-minimality and quantifier elimination do not imply each other.
- A dense linear order with endpoints in the language $L=\langle\langle \rangle$ is o-minimal, but does not have QE.

O-minimality and Quantifier Elimination

- O-minimality and quantifier elimination do not imply each other.
- A dense linear order with endpoints in the language $L=\langle\langle \rangle$ is o-minimal, but does not have QE.
- The theory of the ordered group of integers in the language $\left\langle+,-, 0,<,\left\{P_{n}\right\}\right\rangle$, with $n=2,3, \ldots$ has QE but is not o-minimal. Indeed, the formula $\exists y 2 y=x$ defines an infinite union of intervals.

O-minimality and Quantifier Elimination

- O-minimality and quantifier elimination do not imply each other.
- A dense linear order with endpoints in the language $L=\langle\langle \rangle$ is o-minimal, but does not have QE.
- The theory of the ordered group of integers in the language $\left\langle+,-, 0,<,\left\{P_{n}\right\}\right\rangle$, with $n=2,3, \ldots$ has QE but is not o-minimal. Indeed, the formula $\exists y 2 y=x$ defines an infinite union of intervals.
- The theory of BL-chains representable as an infinite ordinal sum $\bigoplus_{i \in I} \mathbf{A}_{i}$ of divisible MV-chains, with a densely ordered index set I with a minimum and without a maximum has QE in the language of BL-chains. However, the set of idempotents is definable [Cortonesi, M., Montagna (2010)].

MV-chains

- What happens with MV-algebras?

MV-chains

- What happens with MV-algebras?
- Can we exploit the characterization for ordered Abelian groups?

MV-chains

- What happens with MV-algebras?
- Can we exploit the characterization for ordered Abelian groups?
- Every divisible MV-chain is o-minimal...

MV-chains

- What happens with MV-algebras?
- Can we exploit the characterization for ordered Abelian groups?
- Every divisible MV-chain is o-minimal...
- but not every o-minimal MV-chain is divisible.

Interpretation (I)

- Let L be a signature of the form $\left\langle<, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{m}\right\rangle$,

Interpretation (I)

- Let L be a signature of the form $\left\langle<, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{m}\right\rangle$,
- By an unnested atomic formula in L we mean one of the following formulas:
(i) $x=y, \quad(x<y)$;
(ii) $\quad x=c, \quad(x<c), \quad$ for some constant symbol $c \in L$;
(iii) $f(\bar{x})=y, \quad(f(\bar{x})<y), \quad$ for some function symbol $f \in \mathrm{~L}$.

Interpretation (I)

- Let L be a signature of the form $\left\langle<, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{m}\right\rangle$,
- By an unnested atomic formula in L we mean one of the following formulas:
(i) $x=y, \quad(x<y)$;
(ii) $x=c, \quad(x<c), \quad$ for some constant symbol $c \in L$;
(iii) $f(\bar{x})=y, \quad(f(\bar{x})<y), \quad$ for some function symbol $f \in \mathrm{~L}$.
- A formula is called unnested if all its atomic subformulas are unnested.

Interpretation (I)

- Let L be a signature of the form $\left\langle<, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{m}\right\rangle$,
- By an unnested atomic formula in L we mean one of the following formulas:
(i) $x=y, \quad(x<y)$;
(ii) $x=c, \quad(x<c), \quad$ for some constant symbol $c \in L$;
(iii) $f(\bar{x})=y, \quad(f(\bar{x})<y), \quad$ for some function symbol $f \in \mathrm{~L}$.
- A formula is called unnested if all its atomic subformulas are unnested.
- For a first-order language $\mathrm{L}=\left\langle<, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{m}\right\rangle$, every formula is equivalent to an unnested formula.

Interpretation (II)

- Let T_{1} and T_{2} be two theories in the the languages $\mathrm{L}_{1}=\left\langle<, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{m}\right\rangle$ and $\mathrm{L}_{2}=\left\langle<, f_{1}^{\prime}, \ldots, f_{n^{\prime}}^{\prime}, c_{1}^{\prime}, \ldots, c_{m^{\prime}}^{\prime}\right\rangle$, respectively.

Interpretation (II)

- Let T_{1} and T_{2} be two theories in the the languages $\mathrm{L}_{1}=\left\langle<, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{m}\right\rangle$ and $\mathrm{L}_{2}=\left\langle<, f_{1}^{\prime}, \ldots, f_{n^{\prime}}^{\prime}, c_{1}^{\prime}, \ldots, c_{m^{\prime}}^{\prime}\right\rangle$, respectively.
- T_{1} is interpretable into T_{2} (with parameters) if there exists an L_{2}-formula $\chi(z)$, and for every $\mathbf{M}_{1} \models \mathrm{~T}_{1}$ there exists a $\mathbf{M}_{2} \models \mathrm{~T}_{2}$ (unique up to isomorphism) such that:

Interpretation (II)

- Let T_{1} and T_{2} be two theories in the the languages $\mathrm{L}_{1}=\left\langle<, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{m}\right\rangle$ and $\mathrm{L}_{2}=\left\langle<, f_{1}^{\prime}, \ldots, f_{n^{\prime}}^{\prime}, c_{1}^{\prime}, \ldots, c_{m^{\prime}}^{\prime}\right\rangle$, respectively.
- T_{1} is interpretable into T_{2} (with parameters) if there exists an L_{2}-formula $\chi(z)$, and for every $\mathbf{M}_{1} \models \mathrm{~T}_{1}$ there exists a $\mathbf{M}_{2} \models \mathrm{~T}_{2}$ (unique up to isomorphism) such that:
(i) there exists a bijection $h_{M_{1}}: M_{1} \rightarrow\left\{a \mid \mathbf{M}_{2} \models \chi(a)\right\}$ from the domain of \mathbf{M}_{1} into the set defined by the L_{2}-formula $\chi(z)$ over the domain of \mathbf{M}_{2};

Interpretation (II)

- Let T_{1} and T_{2} be two theories in the the languages $\mathrm{L}_{1}=\left\langle<, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{m}\right\rangle$ and $\mathrm{L}_{2}=\left\langle<, f_{1}^{\prime}, \ldots, f_{n^{\prime}}^{\prime}, c_{1}^{\prime}, \ldots, c_{m^{\prime}}^{\prime}\right\rangle$, respectively.
- T_{1} is interpretable into T_{2} (with parameters) if there exists an L_{2}-formula $\chi(z)$, and for every $\mathbf{M}_{1} \models \mathrm{~T}_{1}$ there exists a $\mathbf{M}_{2} \models \mathrm{~T}_{2}$ (unique up to isomorphism) such that:
(i) there exists a bijection $h_{M_{1}}: M_{1} \rightarrow\left\{a \mid \mathbf{M}_{2} \models \chi(a)\right\}$ from the domain of \mathbf{M}_{1} into the set defined by the L_{2}-formula $\chi(z)$ over the domain of \mathbf{M}_{2};
(ii) for each unnested atomic L_{1}-formula $\varphi(\bar{x})$, there exists an L_{2}-formula $\varphi^{\sharp}(\bar{x})$ such that for every every $\bar{b} \in M_{1}$

Interpretation (II)

- Let T_{1} and T_{2} be two theories in the the languages $\mathrm{L}_{1}=\left\langle<, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{m}\right\rangle$ and $\mathrm{L}_{2}=\left\langle<, f_{1}^{\prime}, \ldots, f_{n^{\prime}}^{\prime}, c_{1}^{\prime}, \ldots, c_{m^{\prime}}^{\prime}\right\rangle$, respectively.
- T_{1} is interpretable into T_{2} (with parameters) if there exists an L_{2}-formula $\chi(z)$, and for every $\mathbf{M}_{1} \models \mathrm{~T}_{1}$ there exists a $\mathbf{M}_{2} \models \mathrm{~T}_{2}$ (unique up to isomorphism) such that:
(i) there exists a bijection $h_{M_{1}}: M_{1} \rightarrow\left\{a \mid \mathbf{M}_{2} \models \chi(a)\right\}$ from the domain of \mathbf{M}_{1} into the set defined by the L_{2}-formula $\chi(z)$ over the domain of \mathbf{M}_{2};
(ii) for each unnested atomic L_{1}-formula $\varphi(\bar{x})$, there exists an L_{2}-formula $\varphi^{\sharp}(\bar{x})$ such that for every every $\bar{b} \in M_{1}$

$$
\mathbf{M}_{1} \models \varphi(\bar{b}) \text { if and only if } \mathbf{M}_{2} \models \varphi^{\sharp}\left(h_{M_{1}}(\bar{b})\right) .
$$

Interpretation (III)

- Let T_{1} and T_{2} be two theories in the languages L_{1} and L_{2}, respectively. Suppose that T_{1} is interpretable in T_{2}. Then for every $\mathbf{M}_{1} \models \mathrm{~T}_{1}$ and for each L_{1}-formula $\varphi(\bar{x})$, there exists an L_{2}-formula $\varphi^{\sharp}(\bar{x})$ so that, for all $\bar{b} \in M_{1}$

Interpretation (III)

- Let T_{1} and T_{2} be two theories in the languages L_{1} and L_{2}, respectively. Suppose that T_{1} is interpretable in T_{2}. Then for every $\mathbf{M}_{1} \models \mathrm{~T}_{1}$ and for each L_{1}-formula $\varphi(\bar{x})$, there exists an L_{2}-formula $\varphi^{\sharp}(\bar{x})$ so that, for all $\bar{b} \in M_{1}$

$$
\mathbf{M}_{1} \models \varphi(\bar{b}) \text { if and only if } \mathbf{M}_{2} \models \varphi^{\sharp}(h(\bar{b})) .
$$

O-minimality and Interpretation

Theorem

Let T_{1} and T_{2} be two theories in the languages L_{1} and L_{2}, respectively. Suppose that T_{1} is interpretable in T_{2}, and T_{2} is o-minimal. Then, T_{1} is o-minimal as well.

O-minimality and Interpretation

Theorem

Let T_{1} and T_{2} be two theories in the languages L_{1} and L_{2}, respectively. Suppose that T_{1} is interpretable in T_{2}, and T_{2} is o-minimal. Then, T_{1} is o-minimal as well.

Corollary

The theory of divisible MV-chain is interpretable in the theory of ordered divisible abelian groups, therefore it is o-minimal.

O-minimality and Interpretation

Theorem

Let T_{1} and T_{2} be two theories in the languages L_{1} and L_{2}, respectively. Suppose that T_{1} is interpretable in T_{2}, and T_{2} is o-minimal. Then, T_{1} is o-minimal as well.

Corollary

The theory of divisible MV-chain is interpretable in the theory of ordered divisible abelian groups, therefore it is o-minimal.

Are all o-minimal MV-chains divisible?

Perfect MV-chains (I)

- For each element x, the least integer n such that $n x=1$ is called the order of x, denoted by ord (x).

Perfect MV-chains (I)

- For each element x, the least integer n such that $n x=1$ is called the order of x, denoted by ord (x).
- If such an n exists, then $\operatorname{ord}(x)=n$, while if it does not exists, $\operatorname{ord}(x)=\infty$.

Perfect MV-chains (I)

- For each element x, the least integer n such that $n x=1$ is called the order of x, denoted by ord (x).
- If such an n exists, then $\operatorname{ord}(x)=n$, while if it does not exists, $\operatorname{ord}(x)=\infty$.
- An MV algebra is called perfect if for every $x \neq 0, \operatorname{ord}(x)=\infty$ if and only if $\operatorname{ord}(\neg(x))<\infty$.

Perfect MV-chains (II)

- Let $\mathbb{Z} \times \mathbf{G}$, where \mathbf{G} is an ordered abelian group, be an ordered abelian group equipped with the lexicographic order.

Perfect MV-chains (II)

- Let $\mathbb{Z} \times \mathbf{G}$, where \mathbf{G} is an ordered abelian group, be an ordered abelian group equipped with the lexicographic order.
- Let $A=\{x: x \in[(0,0),(1,0)]\}$, and define over A

$$
(a, b) \oplus(c, d)= \begin{cases}(a+c, b+d) & a+c<1 \text { or } \\ (1,0) & a+c=1 \text { and } b+d<0 \\ \text { otherwise }\end{cases}
$$

Perfect MV-chains (II)

- Let $\mathbb{Z} \times \mathbf{G}$, where \mathbf{G} is an ordered abelian group, be an ordered abelian group equipped with the lexicographic order.
- Let $A=\{x: x \in[(0,0),(1,0)]\}$, and define over A

$$
\begin{aligned}
(a, b) \oplus(c, d) & = \begin{cases}(a+c, b+d) & a+c<1 \text { or } \\
(1,0) & a+c=1 \text { and } b+d<0 \\
\text { otherwise }\end{cases} \\
\neg(a, b) & =(1-a, 0-b)
\end{aligned}
$$

Perfect MV-chains (II)

- Let $\mathbb{Z} \times \mathbf{G}$, where \mathbf{G} is an ordered abelian group, be an ordered abelian group equipped with the lexicographic order.
- Let $A=\{x: x \in[(0,0),(1,0)]\}$, and define over A

$$
\begin{aligned}
(a, b) \oplus(c, d) & = \begin{cases}(a+c, b+d) & a+c<1 \text { or } \\
(1,0) & a+c=1 \text { and } b+d<0 \\
\text { otherwise }\end{cases} \\
\neg(a, b) & =(1-a, 0-b)
\end{aligned}
$$

- $\Gamma(\mathbb{Z} \times \mathbf{G},(1,0))=\langle A, \oplus, \neg,(0,0),(1,0)\rangle$ is a perfect MV-chain

Perfect MV-chains (II)

- Let $\mathbb{Z} \times \mathbf{G}$, where \mathbf{G} is an ordered abelian group, be an ordered abelian group equipped with the lexicographic order.
- Let $A=\{x: x \in[(0,0),(1,0)]\}$, and define over A

$$
\begin{aligned}
(a, b) \oplus(c, d) & = \begin{cases}(a+c, b+d) & a+c<1 \text { or } \\
(1,0) & a+c=1 \text { and } b+d<0 \\
\text { otherwise }\end{cases} \\
\neg(a, b) & =(1-a, 0-b)
\end{aligned}
$$

- $\Gamma(\mathbb{Z} \times \mathbf{G},(1,0))=\langle A, \oplus, \neg,(0,0),(1,0)\rangle$ is a perfect MV-chain
- Every perfect MV chain $\mathbf{A} \cong \Gamma(\mathbb{Z} \times \mathbf{G},(1,0))$ [Di Nola, Lettieri (1994)].

Perfect MV-chains (III)

- An MV-algebra is perfect IFF it satisfies the sentence [Belluce, Di Nola, Gerla (2007)]

$$
\forall x\left(x^{2} \oplus x^{2}=(x \oplus x)^{2}\right) \sqcap\left(\left(x^{2}=x\right) \rightarrow(x=0) \sqcup(x=1)\right)
$$

Perfect MV-chains (III)

- An MV-algebra is perfect IFF it satisfies the sentence [Belluce, Di Nola, Gerla (2007)]

$$
\forall x\left(x^{2} \oplus x^{2}=(x \oplus x)^{2}\right) \sqcap\left(\left(x^{2}=x\right) \rightarrow(x=0) \sqcup(x=1)\right)
$$

- We call a perfect MV-chain A semidivisible if the sentences

$$
\forall x \exists y(x \leq \neg x) \rightarrow(n y=x),
$$

for all n, hold in \mathbf{A}.

Perfect MV-chains (III)

- An MV-algebra is perfect IFF it satisfies the sentence [Belluce, Di Nola, Gerla (2007)]

$$
\forall x\left(x^{2} \oplus x^{2}=(x \oplus x)^{2}\right) \sqcap\left(\left(x^{2}=x\right) \rightarrow(x=0) \sqcup(x=1)\right)
$$

- We call a perfect MV-chain A semidivisible if the sentences

$$
\forall x \exists y(x \leq \neg x) \rightarrow(n y=x)
$$

for all n, hold in A.

- Semidivisible perfect MV-chains are exactly those chains A such that $\mathbf{A} \cong \Gamma(\mathbb{Z} \times \mathbf{G},(1,0))$, where \mathbf{G} is a divisible ordered abelian group.

Perfect MV-chains (IV)

Lemma

The theory of semidivisible Perfect MV-chains is interpretable in the theory of ordered divisible abelian groups.

Perfect MV-chains (IV)

Lemma

The theory of semidivisible Perfect MV-chains is interpretable in the theory of ordered divisible abelian groups.

Lemma

The theory of ordered divisible abelian groups is interpretable in the theory of semidivisible Perfect MV-chains .

Perfect MV-chains (IV)

Lemma

The theory of semidivisible Perfect MV-chains is interpretable in the theory of ordered divisible abelian groups.

Lemma

The theory of ordered divisible abelian groups is interpretable in the theory of semidivisible Perfect MV-chains .

Theorem

Every Perfect MV-chain is semidivisible IFF it is o-minimal.

Local MV-chains of finite rank (I)

- An MV algebra \mathbf{A} is called local if for every element $x, \operatorname{ord}(x)<\infty$ or $\operatorname{ord}(\neg(x))<\infty$.

Local MV-chains of finite rank (I)

- An MV algebra \mathbf{A} is called local if for every element $x, \operatorname{ord}(x)<\infty$ or $\operatorname{ord}(\neg(x))<\infty$.
- Recall that the radical $\operatorname{Rad}(\mathbf{A})$ is the intersection of maximal ideals of \mathbf{A}

Local MV-chains of finite rank (I)

- An MV algebra \mathbf{A} is called local if for every element $x, \operatorname{ord}(x)<\infty$ or $\operatorname{ord}(\neg(x))<\infty$.
- Recall that the radical $\operatorname{Rad}(\mathbf{A})$ is the intersection of maximal ideals of \mathbf{A}
- An MV algebra \mathbf{A} has rank n iff $\mathbf{A} / \operatorname{Rad}(\mathbf{A}) \cong \mathbf{S}_{n}$

Local MV-chains of finite rank (I)

- An MV algebra A is called local if for every element $x, \operatorname{ord}(x)<\infty$ or $\operatorname{ord}(\neg(x))<\infty$.
- Recall that the radical $\operatorname{Rad}(\mathbf{A})$ is the intersection of maximal ideals of \mathbf{A}
- An MV algebra \mathbf{A} has rank n iff $\mathbf{A} / \operatorname{Rad}(\mathbf{A}) \cong \mathbf{S}_{n}$
- A local MV-algebra \mathbf{A} of rank n is radical retractive if $\mathbf{A} / \operatorname{Rad}(\mathbf{A})$ is a subalgebra of A.

Local MV-chains of finite rank (II)

- Let $\mathbb{Z} \times \mathbf{G}$, where \mathbf{G} is an ordered abelian group, be an ordered abelian group equipped with the lexicographic order.

Local MV-chains of finite rank (II)

- Let $\mathbb{Z} \times \mathbf{G}$, where \mathbf{G} is an ordered abelian group, be an ordered abelian group equipped with the lexicographic order.
- Let $A=\{x: x \in[(0,0),(n, 0)]\}$, and define over A

$$
(a, b) \oplus(c, d)= \begin{cases}(a+c, b+d) & a+c<n \text { or } \\ & a+c=n \text { and } b+d<0 \\ (n, 0) & \text { otherwise }\end{cases}
$$

Local MV-chains of finite rank (II)

- Let $\mathbb{Z} \times \mathbf{G}$, where \mathbf{G} is an ordered abelian group, be an ordered abelian group equipped with the lexicographic order.
- Let $A=\{x: x \in[(0,0),(n, 0)]\}$, and define over A

$$
\begin{aligned}
&(a, b) \oplus(c, d)= \begin{cases}(a+c, b+d) & a+c<n \text { or } \\
(n, 0) & \begin{array}{l}
\text { atherwise } \\
\text { oth }
\end{array} \\
\neg(a, b) & =(n-a, 0-b)\end{cases} \\
&
\end{aligned}
$$

Local MV-chains of finite rank (II)

- Let $\mathbb{Z} \times \mathbf{G}$, where \mathbf{G} is an ordered abelian group, be an ordered abelian group equipped with the lexicographic order.
- Let $A=\{x: x \in[(0,0),(n, 0)]\}$, and define over A

$$
\begin{aligned}
&(a, b) \oplus(c, d)= \begin{cases}(a+c, b+d) & a+c<n \text { or } \\
(n, 0) & \begin{array}{l}
\text { otherwise }
\end{array} \\
\neg(a, b) & =(n-a, 0-b)\end{cases} \\
& \quad=n+d<0
\end{aligned}
$$

- $\Gamma(\mathbb{Z} \times \mathbf{G},(n, 0))=\langle A, \oplus, \neg,(0,0),(n, 0)\rangle$ is a radical retractive local MV-chain of rank n.

Local MV-chains of finite rank (II)

- Let $\mathbb{Z} \times \mathbf{G}$, where \mathbf{G} is an ordered abelian group, be an ordered abelian group equipped with the lexicographic order.
- Let $A=\{x: x \in[(0,0),(n, 0)]\}$, and define over A

$$
\begin{aligned}
(a, b) \oplus(c, d) & = \begin{cases}(a+c, b+d) & a+c<n \text { or } \\
(n, 0) & \begin{array}{l}
a+c=n \text { and } b+d<0 \\
\text { otherwise }
\end{array} \\
\neg(a, b) & =(n-a, 0-b)\end{cases}
\end{aligned}
$$

- $\Gamma(\mathbb{Z} \times \mathbf{G},(n, 0))=\langle A, \oplus, \neg,(0,0),(n, 0)\rangle$ is a radical retractive local MV-chain of rank n.
- Every radical retractive local MV-chain of rank $n \mathbf{A} \cong \Gamma(\mathbb{Z} \times \mathbf{G},(n, 0))$ [Di Nola, Esposito, Gerla (2007)].

Local MV-chains of finite rank (III)

- Every radical retractive local MV-chain of rank n satisfies [Di Nola, Esposito, Gerla (2007)]

$$
\forall x\left((2 x=1) \sqcup\left(x^{2}=0\right) \sqcup((n+1) x=1) \sqcap\left(x^{n+1}=0\right)\right) .
$$

Local MV-chains of finite rank (III)

- Every radical retractive local MV-chain of rank n satisfies [Di Nola, Esposito, Gerla (2007)]

$$
\forall x\left((2 x=1) \sqcup\left(x^{2}=0\right) \sqcup((n+1) x=1) \sqcap\left(x^{n+1}=0\right)\right) .
$$

- We call a radical retractive local MV-chain A of rank n semidivisible it the sentences,

$$
\forall x \exists y(n x<1) \rightarrow(m y=x),
$$

for all m, hold in \mathbf{A}.

Local MV-chains of finite rank (III)

- Every radical retractive local MV-chain of rank n satisfies [Di Nola, Esposito, Gerla (2007)]

$$
\forall x\left((2 x=1) \sqcup\left(x^{2}=0\right) \sqcup((n+1) x=1) \sqcap\left(x^{n+1}=0\right)\right) .
$$

- We call a radical retractive local MV-chain A of rank n semidivisible it the sentences,

$$
\forall x \exists y(n x<1) \rightarrow(m y=x),
$$

for all m, hold in \mathbf{A}.

- Semidivisible radical retractive local MV-chain of rank n are exactly those chains A such that $\mathbf{A} \cong \Gamma(\mathbb{Z} \times \mathbf{G},(n, 0))$, where \mathbf{G} is a divisible ordered abelian group.

Local MV-chains of finite rank (IV)

Theorem

Every o-minimal radical retractive local MV-chain of rank n is semidivisible.

Local MV-chains of finite rank (IV)

Theorem

Every o-minimal radical retractive local MV-chain of rank n is semidivisible.

- Is the converse true?

Local MV-chains of finite rank (IV)

Theorem

Every o-minimal radical retractive local MV-chain of rank n is semidivisible.

- Is the converse true?
- Notice that $\mathbb{Z} \times \mathbf{G}$ is not o-minimal, so we cannot use the technique of interpretation.

Local MV-chains of finite rank (IV)

Theorem

Every o-minimal radical retractive local MV-chain of rank n is semidivisible.

- Is the converse true?
- Notice that $\mathbb{Z} \times \mathbf{G}$ is not o-minimal, so we cannot use the technique of interpretation.
- However...

Local MV-chains of finite rank (IV)

Theorem

Every o-minimal radical retractive local MV-chain of rank n is semidivisible.

- Is the converse true?
- Notice that $\mathbb{Z} \times \mathbf{G}$ is not o-minimal, so we cannot use the technique of interpretation.
- However...

Theorem

Every semidivisible radical retractive local MV-chain of rank n is o-minimal.

Imaginary Elements (I)

- Let L be a first-order language and \mathbf{A} an L-structure.

Imaginary Elements (I)

- Let L be a first-order language and \mathbf{A} an L-structure.
- An equivalence formula of \mathbf{A} is a formula $\phi(\bar{x}, \bar{y})$ of L, without parameters, such that the relation $\{(a, b): \mathbf{A} \mid=\phi(\bar{a}, \bar{b})\}$ is a non-empty equivalence relation E_{ϕ}.

Imaginary Elements (I)

- Let L be a first-order language and \mathbf{A} an L-structure.
- An equivalence formula of \mathbf{A} is a formula $\phi(\bar{x}, \bar{y})$ of L, without parameters, such that the relation $\{(a, b): \mathbf{A} \mid=\phi(\bar{a}, \bar{b})\}$ is a non-empty equivalence relation E_{ϕ}.
- Items of the form \bar{a} / ϕ, where ϕ is an equivalence formula and \bar{a} a tuple, are known as imaginary elements of A.

Imaginary Elements (I)

- Let L be a first-order language and \mathbf{A} an L-structure.
- An equivalence formula of \mathbf{A} is a formula $\phi(\bar{x}, \bar{y})$ of L, without parameters, such that the relation $\{(a, b): \mathbf{A} \mid=\phi(\bar{a}, \bar{b})\}$ is a non-empty equivalence relation E_{ϕ}.
- Items of the form \bar{a} / ϕ, where ϕ is an equivalence formula and \bar{a} a tuple, are known as imaginary elements of A.
- L-structure \mathbf{A} has elimination of imaginaries if for every equivalence formula $\theta(\bar{x}, \bar{y})$ of \mathbf{A} and each tuple \bar{a} in \mathbf{A} there is a formula $\phi(\bar{x}, \bar{y})$ of L such that the equivalence class \bar{a} / θ of \bar{a} can be written as $\phi\left(A^{n}, \bar{b}\right)$ for some unique tuple \bar{b} from \mathbf{A}.

Imaginary Elements (I)

- Let L be a first-order language and \mathbf{A} an L-structure.
- An equivalence formula of \mathbf{A} is a formula $\phi(\bar{x}, \bar{y})$ of L, without parameters, such that the relation $\{(a, b): \mathbf{A} \models \phi(\bar{a}, \bar{b})\}$ is a non-empty equivalence relation E_{ϕ}.
- Items of the form \bar{a} / ϕ, where ϕ is an equivalence formula and \bar{a} a tuple, are known as imaginary elements of A.
- L-structure \mathbf{A} has elimination of imaginaries if for every equivalence formula $\theta(\bar{x}, \bar{y})$ of \mathbf{A} and each tuple \bar{a} in \mathbf{A} there is a formula $\phi(\bar{x}, \bar{y})$ of L such that the equivalence class \bar{a} / θ of \bar{a} can be written as $\phi\left(A^{n}, \bar{b}\right)$ for some unique tuple \bar{b} from \mathbf{A}.
- We say that \mathbf{A} has uniform elimination of imaginaries if the same holds, except that ϕ depends only on θ and not on \bar{a}.

Imaginary Elements (II)

Theorem
The theory of divisible MV-chains has uniform elimination of imaginaries.

Imaginary Elements (II)

Theorem

The theory of divisible MV-chains has uniform elimination of imaginaries.

- Every o-minimal structure with definable Skolem functions and at least two constant elements has uniform elimination of imaginaries [Hodges (1993)].

Imaginary Elements (II)

Theorem

The theory of divisible MV-chains has uniform elimination of imaginaries.

- Every o-minimal structure with definable Skolem functions and at least two constant elements has uniform elimination of imaginaries [Hodges (1993)].
- Recall that a theory T has definable Skolem functions if for every formula $\phi(\bar{x}, y)$, with \bar{x} not empty, there is a formula $\psi(\bar{x}, y)$ such that

$$
\mathrm{T} \vdash \forall \bar{x}(\exists y \phi(\bar{x}, y) \rightarrow(\exists=1 y \psi(\bar{x}, y) \wedge \forall y(\psi(\bar{x}, y) \rightarrow \phi(\bar{x}, y)))) .
$$

Imaginary Elements (III)

Theorem

The theory of divisible MV-chains has definable Skolem functions.

Imaginary Elements (III)

Theorem

The theory of divisible MV-chains has definable Skolem functions.

- This follows by applying a theorem by van den Dries to the following facts:

Imaginary Elements (III)

Theorem

The theory of divisible MV-chains has definable Skolem functions.

- This follows by applying a theorem by van den Dries to the following facts:
(1) the theory of divisible MV-chains has quantifier elimination;

Imaginary Elements (III)

Theorem

The theory of divisible MV-chains has definable Skolem functions.

- This follows by applying a theorem by van den Dries to the following facts:
(1) the theory of divisible MV-chains has quantifier elimination;
(2) every MV-chain \mathbf{A} can be embedded into a divisible one \mathbf{B} such that for every $b \in B$ there is a formula $\phi(x)$ (with parameters from A) such that $\mathbf{B} \models \phi(b)$ and B $\models(\exists \leq n x) \phi(x)$ for some n;

Imaginary Elements (III)

Theorem

The theory of divisible MV-chains has definable Skolem functions.

- This follows by applying a theorem by van den Dries to the following facts:
(1) the theory of divisible MV-chains has quantifier elimination;
(2) every MV-chain \mathbf{A} can be embedded into a divisible one \mathbf{B} such that for every $b \in B$ there is a formula $\phi(x)$ (with parameters from A) such that $\mathbf{B} \models \phi(b)$ and B $\models\left(\exists \leq n^{x}\right) \phi(x)$ for some n;
(3) every MV-chain A can be embedded into a divisible one \mathbf{B} such that there is no automorphism of \mathbf{B} fixing \mathbf{A} other than the identity.

The End

THANKS!

