Divisible pseudo-BCK-algebras

Jan Kühr
Department of Algebra and Geometry
Palacký University in Olomouc
Czech Republic
jan.kuhr@upol.cz

Divisible porims/residuated lattices

- A porim is a structure $(A ; \cdot, \rightarrow, \rightsquigarrow, 1, \leq)$ such that $(A ; \cdot, 1, \leq)$ is an integral pomonoid and

$$
x \cdot y \leq z \quad \Leftrightarrow \quad x \leq y \rightarrow z \quad \Leftrightarrow \quad y \leq x \rightsquigarrow z
$$

for all $x, y, z \in A$.

- A porim A is called divisible if
- $x \leq y$ iff $x=y \cdot a=b \cdot y$ for some $a, b \in A$, or
- A satisfies the identity

$$
x \cdot(x \rightsquigarrow y)=(y \rightarrow x) \cdot y .
$$

Divisible porims/residuated lattices

- A porim is a structure $(A ; \cdot, \rightarrow, \rightsquigarrow, 1, \leq)$ such that $(A ; \cdot, 1, \leq)$ is an integral pomonoid and

$$
x \cdot y \leq z \quad \Leftrightarrow \quad x \leq y \rightarrow z \quad \Leftrightarrow \quad y \leq x \rightsquigarrow z
$$

for all $x, y, z \in A$.

- A porim A is called divisible if
- $x \leq y$ iff $x=y \cdot a=b \cdot y$ for some $a, b \in A$, or
- A satisfies the identity

$$
x \cdot(x \rightsquigarrow y)=(y \rightarrow x) \cdot y .
$$

- Divisible porims $=$ pseudo-hoops
- Divisible integral residuated lattices $=$ integral GBL-algebras

Divisible porims/residuated lattices

- A porim is a structure $(A ; \cdot, \rightarrow, \rightsquigarrow, 1, \leq)$ such that $(A ; \cdot, 1, \leq)$ is an integral pomonoid and

$$
x \cdot y \leq z \quad \Leftrightarrow \quad x \leq y \rightarrow z \quad \Leftrightarrow \quad y \leq x \rightsquigarrow z
$$

for all $x, y, z \in A$.

- A porim A is called divisible if
- $x \leq y$ iff $x=y \cdot a=b \cdot y$ for some $a, b \in A$, or
- A satisfies the identity

$$
x \cdot(x \rightsquigarrow y)=(y \rightarrow x) \cdot y .
$$

- Divisible porims $=$ pseudo-hoops
- Divisible integral residuated lattices $=$ integral GBL-algebras
- Jipsen \& Montagna: finite GBL-algebras are commutative

Pseudo-BCK-algebras

- A pseudo-BCK-algebra [Georgescu \& lorgulescu] is a structure $(A ; \rightarrow, \rightsquigarrow, 1, \leq)$ such that \leq is a partial order under which 1 is the top element of A, and the following conditions are satisfied (for all $x, y, z \in A$):

$$
\begin{gathered}
x \rightarrow y \leq(y \rightarrow z) \rightsquigarrow(x \rightarrow z), \quad x \rightsquigarrow y \leq(y \rightsquigarrow z) \rightarrow(x \rightsquigarrow z), \\
1 \rightarrow x=x, \quad 1 \rightsquigarrow x=x, \\
x \leq y \quad \Leftrightarrow \quad x \rightarrow y=1 \quad \Leftrightarrow \quad x \rightsquigarrow y=1 .
\end{gathered}
$$

- $(A ; \rightarrow, \rightsquigarrow, 1, \leq) \quad \longmapsto \quad(A ; \rightarrow, \rightsquigarrow, 1)$
- Pseudo-BCK-algebras $=$ the $\{\rightarrow, \rightsquigarrow, 1\}$-subreducts of porims/integral residuated lattices

Divisible pseudo-BCK-algebras

- A porim is divisible iff it satisfies

$$
\begin{aligned}
& (x \rightarrow y) \rightarrow(x \rightarrow z)=(y \rightarrow x) \rightarrow(y \rightarrow z), \\
& (x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z)=(y \rightsquigarrow x) \rightsquigarrow(y \rightsquigarrow z) .
\end{aligned}
$$

Divisible pseudo-BCK-algebras

- A porim is divisible iff it satisfies

$$
\begin{aligned}
& \underbrace{(x \rightarrow y) \rightarrow(x \rightarrow z)}_{((x \rightarrow y) \cdot x) \rightarrow z}=\underbrace{(y \rightarrow x) \rightarrow(y \rightarrow z)}_{((y \rightarrow x) \cdot y) \rightarrow z}, \\
& (x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z)=(y \rightsquigarrow x) \rightsquigarrow(y \rightsquigarrow z) .
\end{aligned}
$$

Divisible pseudo-BCK-algebras

- A porim is divisible iff it satisfies

$$
\begin{aligned}
& \underbrace{(x \rightarrow y) \rightarrow(x \rightarrow z)}_{((x \rightarrow y) \cdot x) \rightarrow z}=\underbrace{(y \rightarrow x) \rightarrow(y \rightarrow z)}_{((y \rightarrow x) \cdot y) \rightarrow z}, \\
& \underbrace{(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z)}_{(x \cdot(x \rightsquigarrow y)) \rightsquigarrow z}=\underbrace{(y \rightsquigarrow x) \rightsquigarrow(y \rightsquigarrow z)}_{(y \cdot(y \rightsquigarrow x)) \rightsquigarrow z} .
\end{aligned}
$$

Divisible pseudo-BCK-algebras

- A porim is divisible iff it satisfies

$$
\begin{aligned}
& \underbrace{(x \rightarrow y) \rightarrow(x \rightarrow z)}_{((x \rightarrow y) \cdot x) \rightarrow z}=\underbrace{(y \rightarrow x) \rightarrow(y \rightarrow z)}_{((y \rightarrow x) \cdot y) \rightarrow z}, \\
& \underbrace{(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z)}_{(x \cdot(x \rightsquigarrow y)) \rightsquigarrow z}=\underbrace{(y \rightsquigarrow x) \rightsquigarrow(y \rightsquigarrow z)}_{(y \cdot(y \rightsquigarrow x)) \rightsquigarrow z} .
\end{aligned}
$$

- We call a pseudo-BCK-algebra divisible if it satisfies these identities.

Divisible pseudo-BCK-algebras

- A porim is divisible iff it satisfies

$$
\begin{aligned}
& \underbrace{(x \rightarrow y) \rightarrow(x \rightarrow z)}_{((x \rightarrow y) \cdot x) \rightarrow z}=\underbrace{(y \rightarrow x) \rightarrow(y \rightarrow z)}_{((y \rightarrow x) \cdot y) \rightarrow z}, \\
& \underbrace{(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z)}_{(x \cdot(x \rightsquigarrow y)) \rightsquigarrow z}=\underbrace{(y \rightsquigarrow x) \rightsquigarrow(y \rightsquigarrow z)}_{(y \cdot(y \rightsquigarrow x)) \rightsquigarrow z} .
\end{aligned}
$$

- We call a pseudo-BCK-algebra divisible if it satisfies these identities.
- Vetterlein:

$$
\begin{aligned}
& (x \rightarrow y) \rightarrow(x \rightarrow z)=x \rightarrow((x \rightsquigarrow y) \rightarrow z), \\
& (x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z)=x \rightsquigarrow((x \rightarrow y) \rightsquigarrow z) .
\end{aligned}
$$

n-potent algebras

- A porim is n-potent $(n \in \mathbb{N})$ if $x^{n}=x^{n+1}$.

n-potent algebras

- A porim is n-potent $(n \in \mathbb{N})$ if $x^{n}=x^{n+1}$.
- Pseudo-BCK-algebras:
- Notation: $x^{n} \rightarrow y=x \rightarrow(\ldots \rightarrow(x \rightarrow y) \ldots)$

n-potent algebras

- A porim is n-potent $(n \in \mathbb{N})$ if $x^{n}=x^{n+1}$.
- Pseudo-BCK-algebras:
- Notation: $x^{n} \rightarrow y=x \rightarrow(\ldots \rightarrow(x \rightarrow y) \ldots)$
- We call a pseudo-BCK-algebra n-potent if for all x, y,

$$
x^{n} \rightarrow y=1 \quad \text { iff } \quad x^{n+1} \rightarrow y=1 .
$$

n-potent algebras

- A porim is n-potent $(n \in \mathbb{N})$ if $x^{n}=x^{n+1}$.
- Pseudo-BCK-algebras:
- Notation: $x^{n} \rightarrow y=x \rightarrow(\ldots \rightarrow(x \rightarrow y) \ldots)$
- We call a pseudo-BCK-algebra n-potent if for all x, y,

$$
x^{n} \rightarrow y=1 \quad \text { iff } \quad x^{n+1} \rightarrow y=1 .
$$

- Equivalently:

$$
x^{n} \rightarrow y=x^{n+1} \rightarrow y \quad \text { or } \quad x^{n} \rightsquigarrow y=x^{n+1} \rightsquigarrow y
$$

n-potent algebras

- A porim is n-potent $(n \in \mathbb{N})$ if $x^{n}=x^{n+1}$.
- Pseudo-BCK-algebras:
- Notation: $x^{n} \rightarrow y=x \rightarrow(\ldots \rightarrow(x \rightarrow y) \ldots)$
- We call a pseudo-BCK-algebra n-potent if for all x, y,

$$
x^{n} \rightarrow y=1 \quad \text { iff } \quad x^{n+1} \rightarrow y=1 .
$$

- Equivalently:

$$
x^{n} \rightarrow y=x^{n+1} \rightarrow y \quad \text { or } \quad x^{n} \rightsquigarrow y=x^{n+1} \rightsquigarrow y
$$

- Every divisible n-potent pseudo-BCK-algebra satisfies the identity

$$
x^{n} \rightarrow y=x^{n} \rightsquigarrow y
$$

Deductive systems

Let $(A ; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCK-algebra. A deductive system is $X \subseteq A$ such that

- $1 \in X$,
- if $a \in X$ and $a \rightarrow b \in X$ (or $a \rightsquigarrow b \in X$), then $b \in X$.

Deductive systems

Let $(A ; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCK-algebra. A deductive system is $X \subseteq A$ such that

- $1 \in X$,
- if $a \in X$ and $a \rightarrow b \in X$ (or $a \rightsquigarrow b \in X$), then $b \in X$.

A deductive system is normal if for all $a, b \in A$,

- $a \rightarrow b \in X$ iff $a \rightsquigarrow b \in X$, or
- if $a \in X$, then $(a \rightarrow b) \rightarrow b \in X$ and $(a \rightsquigarrow b) \rightsquigarrow b \in X$.

Deductive systems

Let $(A ; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCK-algebra. A deductive system is $X \subseteq A$ such that

- $1 \in X$,
- if $a \in X$ and $a \rightarrow b \in X$ (or $a \rightsquigarrow b \in X$), then $b \in X$.

A deductive system is normal if for all $a, b \in A$,

- $a \rightarrow b \in X$ iff $a \rightsquigarrow b \in X$, or
- if $a \in X$, then $(a \rightarrow b) \rightarrow b \in X$ and $(a \rightsquigarrow b) \rightsquigarrow b \in X$. If X is a normal d.s., then $\theta_{X}=\{\langle a, b\rangle \mid a \rightarrow b, b \rightarrow a \in X\}$ is a congruence such that $A / X=A / \theta_{X}$ is a pseudo-BCK-algebra.

Deductive systems

Let $(A ; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCK-algebra. A deductive system is $X \subseteq A$ such that

- $1 \in X$,
- if $a \in X$ and $a \rightarrow b \in X$ (or $a \rightsquigarrow b \in X$), then $b \in X$.

A deductive system is normal if for all $a, b \in A$,

- $a \rightarrow b \in X$ iff $a \rightsquigarrow b \in X$, or
- if $a \in X$, then $(a \rightarrow b) \rightarrow b \in X$ and $(a \rightsquigarrow b) \rightsquigarrow b \in X$. If X is a normal d.s., then $\theta_{X}=\{\langle a, b\rangle \mid a \rightarrow b, b \rightarrow a \in X\}$ is a congruence such that $A / X=A / \theta_{X}$ is a pseudo-BCK-algebra.

Every divisible n-potent pseudo-BCK-algebra is normal, in the sense that every deductive system is normal.

Subdirectly irreducible normal divisible pseudo-BCK-algebras

Blok \& Ferreirim: hoops Jipsen \& Montagna: integral GBL-algebras

Subdirectly irreducible normal divisible pseudo-BCK-algebras

Blok \& Ferreirim: hoops
Jipsen \& Montagna: integral GBL-algebras
Ordinal sums
Let $(I ; \leq)$ be a linearly ordered set and $\left\{A_{i} \mid i \in I\right\}$ be a family of pseudo-BCK-algebras such that $A_{i} \cap A_{j}=1$ for all $i \neq j$. The ordinal sum of the algebras $\left(A_{i} ; \rightarrow_{i}, \rightsquigarrow_{i}, 1\right)$ is the pseudo-BCK-algebra $\bigoplus_{i \in I} A_{i}=\left(\bigcup_{i \in I} A_{i} ; \rightarrow, \rightsquigarrow, 1\right)$ where

$$
x \rightarrow y= \begin{cases}x \rightarrow_{i} y & \text { if } x, y \in A_{i} \text { for some } i, \\ 1 & \text { if } x \in A_{i} \backslash\{1\} \text { and } y \in A_{j} \text { for some } i<j, \\ y & \text { if } x \in A_{i} \text { and } y \in A_{j} \backslash\{1\} \text { for some } i>j\end{cases}
$$

and \rightsquigarrow is defined in the same way.

Subdirectly irreducible normal divisible pseudo-BCK-algebras

Cone algebras [Bosbach]

- Let $\left(G ; \cdot,^{-1}, 1, \leq\right)$ be a lattice-ordered groups. Then every subalgebra of the algebra $\left(G^{-} ; \rightarrow, \rightsquigarrow, 1\right)$ where

$$
x \rightarrow y=y x^{-1} \wedge 1 \quad \text { and } \quad x \rightsquigarrow y=x^{-1} y \wedge 1
$$

is a cone algebra.

Subdirectly irreducible normal divisible pseudo-BCK-algebras

Cone algebras [Bosbach]

- Let $\left(G ; \cdot,^{-1}, 1, \leq\right)$ be a lattice-ordered groups. Then every subalgebra of the algebra $\left(G^{-} ; \rightarrow, \rightsquigarrow, 1\right)$ where

$$
x \rightarrow y=y x^{-1} \wedge 1 \quad \text { and } \quad x \rightsquigarrow y=x^{-1} y \wedge 1
$$

is a cone algebra.

- A cone algebra is a divisible pseudo-BCK-algebra satisfying the identity

$$
(x \rightarrow y) \rightsquigarrow y=(y \rightsquigarrow x) \rightarrow x .
$$

Subdirectly irreducible normal divisible pseudo-BCK-algebras

Theorem

A non-trivial normal divisible pseudo-BCK-algebra A is subdirectly irreducible iff it is of the form $A=B \oplus C$ where C is a non-trivial subdirectly irreducible linearly ordered cone algebra.

Subdirectly irreducible normal divisible pseudo-BCK-algebras

Theorem

A non-trivial normal divisible pseudo-BCK-algebra A is subdirectly irreducible iff it is of the form $A=B \oplus C$ where C is a non-trivial subdirectly irreducible linearly ordered cone algebra.

Theorem

Every n-potent divisible pseudo-BCK-algebra is a BCK-algebra. Every finite divisible pseudo-BCK-algebra is a BCK-algebra.

Poset products

Jipsen \& Montagna:
Let $(I ; \leq)$ be a poset and let $\left\{A_{i} \mid i \in I\right\}$ be a family of MV-chains (with the same 0 and 1). Let $A=\bigotimes_{i \in I} A_{i}$ be the subset of $\prod_{i \in I} A_{i}$ defined as follows:

$$
a \in A \quad \text { iff } \quad \text { whenever } a(i) \neq 1 \text {, then } a(j)=0 \text { for all } j<i \text {. }
$$

If the multiplication and the lattice operations are defined pointwise, then $\bigotimes_{i \in I} A_{i}$ is a GBL-algebra where

$$
(a \rightarrow b)(i)= \begin{cases}a(i) \rightarrow b(i) & \text { if } a(j) \leq b(j) \text { for all } j<i, \\ 0 & \text { otherwise }\end{cases}
$$

Poset products

Jipsen \& Montagna:
Let $(I ; \leq)$ be a poset and let $\left\{A_{i} \mid i \in I\right\}$ be a family of MV-chains (with the same 0 and 1). Let $A=\bigotimes_{i \in I} A_{i}$ be the subset of $\prod_{i \in I} A_{i}$ defined as follows:

$$
a \in A \quad \text { iff } \quad \text { whenever } a(i) \neq 1 \text {, then } a(j)=0 \text { for all } j<i \text {. }
$$

If the multiplication and the lattice operations are defined pointwise, then $\bigotimes_{i \in I} A_{i}$ is a GBL-algebra where

$$
(a \rightarrow b)(i)= \begin{cases}a(i) \rightarrow b(i) & \text { if } a(j) \leq b(j) \text { for all } j<i, \\ 0 & \text { otherwise }\end{cases}
$$

Theorem

Every finite divisible BCK-algebra embeds into a poset product of linearly ordered MV-algebras.

Theorem

Every finite divisible BCK-algebra embeds into a poset product of linearly ordered MV-algebras.

Let Γ be the set of all completely meet-irreducible deductive systems $M \neq A$, ordered by inclusion. Then for every $M \in \Gamma$, A / M is subdirectly irreducible, so $A / M=B_{M} \oplus C_{M}$ where C_{M} is a finite MV-chain. Then A embeds into the poset product $\otimes_{M \in \Gamma} C_{M}$.

THANK YOU!

