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Degrees of Belief/Truth States Belief Functions Measures on Lattices

Motivation: Probability
▶ probability on BAs provides tools for dealing with events like

“Manchester United will score in the 1st half of a match”
▶ MV-probability is dealing with infinite-valued events like

“Manchester United will score early in a match”

How to combine degrees of belief with truth degrees?
..1 Axiomatization
..2 Representation
..3 Semantics (de Finetti-style theorems)
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Motivation: Belief Functions

…when only a special lower estimate of probability is available!

How to combine degrees of belief with truth degrees?
..1 Axiomatization
..2 Representation
..3 Semantics (de Finetti-style theorems)
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Motivation: Möbius Transform
▶ cumulative representation of a real function on a locally finite

poset (G.-C. Rota)

▶ totally monotone function
▶ function on a finite BA with all n-th order differences

nonnegative
▶ function possessing nonnegative Möbius transform

Generalization of Möbius transform to MV-algebras?
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The Framework

Combining degrees of truth/belief
Φ := set of (equivalence classes of) formulas in Łukasiewicz logic
Φ := k-generated free MV-algebra Lk
p : Φ → [0, 1]

p can be a
▶ probability (Mundici,Riečan,…)
▶ belief/plausibility (TK, Flaminio, Godo, Marchioni)
▶ CLP/CUP (Montagna, Keimel,...)
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States

Definition (Mundici, Riečan)
A state s on Lk is a function Lk → [0, 1] with

▶ s(f ⊕ g) = s(f) + s(g), for every f, g ∈ Lk s.t. f ⊙ g = 0
▶ s(0) = 0, s(1) = 1

Every state is
▶ monotone f ⩽ g implies s(f) ⩽ s(g)
▶ modular s(f ⊕ g) + s(f ⊙ g) = s(f) + s(g)
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States are Integrals

Theorem
For every state s there exists a unique Borel probability measure µ

on [0, 1]k such that s(f) =
∫

f dµ, for each f ∈ Lk.

Equivalently: ∫
[0,1]k

f dµ =

∫1

0
µ
(
f−1([t, 1])

)
dt

Measuring upper level sets determines the integral.
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Averaging the Truth Value
▶ ϕ formula (f ∈ Lk)
▶ V1,V2 truth valuations

(x1, x2 ∈ [0, 1]k)
▶ s “averaged” truth valuation with c ∈ [0, 1]:

s(ϕ) := cV1(ϕ) + (1 − c)V2(ϕ) = cf(x1) + (1 − c)f(x2)

▶ (sn) convergent sequence (in [0, 1]Lk) of “averaged” TVs:

s(ϕ) := lim
n→∞ sn(ϕ)
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Averaging the Relative Truth Value
▶ ϕ formula (f ∈ Lk)
▶ A closed set of truth valuations (closed set in [0, 1]k)
▶ Pavelka-style truth degree of ϕ over A:

∥ϕ∥A := inf { V(ϕ) | V ∈ A } = inf { f(x) | x ∈ A }

Question
Which function on Lk is obtained by

▶ averaging ∥ϕ∥A1 , ∥ϕ∥A2

▶ taking limits of such averages
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BFs on BAs

Definition (Dempster, Shafer)
Let X be a finite nonempty set. A function

β : P(X) → [0, 1]

is a belief measure if there is a mapping (basic assignment)

m : P(X) → [0, 1]

with m(∅) = 0 and
∑

A∈P(X)

m(A) = 1 such that

β(A) =
∑
B⊆A

m(B), A ∈ P(X).
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BFs on BAs: Examples

Example (MU wins, loses, or a TV-set was switched off?)
X = {W, L}

m(A) =


w, A = {W}

ℓ, A = {L}
1 − w − ℓ, A = X

w + ℓ < 1, w, ℓ ⩾ 0

Example (Laplace principle of insufficient reason)

m(A) =
{

1, A = X
0, otherwise
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Total Monotonicity

Theorem
The FAE:

..1 β is a belief measure

..2 β : P(X) → [0, 1] satisfies β(∅) = 0,β(X) = 1 and
▶ it is monotone
▶ for each n ⩾ 2 and every A1, . . . ,An ∈ P(X):

β

( n∪
i=1

Ai

)
⩾

∑
I⊆{1,...n}

I ̸=∅

(−1)|I|+1β

(∩
i∈I

Ai

)
.

The function mβ constructed in (2) ⇒ (1) is called the Möbius
transform of β and β(A) =

∑
B⊆A mβ(B)
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Belief Measures: From BAs to MVs

Belief measures Belief functions
belief measure on P(X) belief function on Lk
basic assignment ?
TM set function ?

▶ the mapping A 7→ {B ∈ P(X) | B ⊆ A} sends the event A to
a set of all sets of possible worlds rendering A true:

∥A∥B := min { A(x) | x ∈ B }

∥A∥ = { B ∈ P(X) | B ⊆ A }

▶ belief of A = probability of ∥A∥:

β(A) = m(∥A∥)
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Belief Measures: From BAs to MVs (ctnd.)
▶ f ∈ Lk, k-variable McNaughton function
▶ A ∈ K, nonempty closed subset of [0, 1]k
▶ define ∥f∥A := inf { f(x) | x ∈ A }

▶ belief of f = state of ∥f∥:

Bel(f) = s(∥f∥)

0

1

[0, 1]

∥f∥x = f(x)

K \ { {x} | x ∈ [0, 1] }

∥f∥A = inf { f(x) | x ∈ A }



Degrees of Belief/Truth States Belief Functions Measures on Lattices

Belief Measures: From BAs to MVs (ctnd.)
▶ f ∈ Lk, k-variable McNaughton function
▶ A ∈ K, nonempty closed subset of [0, 1]k
▶ define ∥f∥A := inf { f(x) | x ∈ A }

▶ belief of f = state of ∥f∥:

Bel(f) = s(∥f∥)

0

1

[0, 1]

∥f∥x = f(x)

K \ { {x} | x ∈ [0, 1] }

∥f∥A = inf { f(x) | x ∈ A }



Degrees of Belief/Truth States Belief Functions Measures on Lattices

Space of Closed Subsets

Definition
Let K be the set of all nonempty closed subsets of [0, 1]k equipped
with the Hausdorff metric dH given by

dH(A,B) = max
{

sup
a∈A

inf
b∈B

∥a − b∥, sup
b∈B

inf
a∈A

∥a − b∥
}
, A,B ∈ K.

Theorem
The metric space (K, dH) is compact.
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Continuation of McNaughton Functions
C(K) the MV-algebra of all continuous functions K → [0, 1]

Proposition
The mapping ∥·∥ : Lk → [0, 1]K is

▶ into C(K)

▶ injective
▶ preserving any existing infima from Lk to C(K)

0

1

[0, 1]

∥f∥x = f(x)

K \ { {x} | x ∈ [0, 1] }

∥f∥A = inf { f(x) | x ∈ A }
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Belief Functions
A state assignment is any state on C(K).

Definition
Let s be a state assignment on C(K). A belief function is
a mapping Bel : Lk → [0, 1] given by

Bel(f) = s(∥f∥), f ∈ Lk.

Example
For each A ∈ K, the function BelA(f) = ∥f∥A is a belief function
whose state assignment is sA, where

sA(h) = h(A), h ∈ C(K).
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Properties

Proposition
Let Bel be a belief function on Lk. Then:

▶ Bel(0) = 0, Bel(1) = 1
▶ if f ⊙ g = 0, then Bel(f ⊕ g) ⩾ Bel(f) + Bel(g)
▶ Bel(f) + Bel(¬f) ⩽ 1
▶ Bel is totally monotone on the lattice reduct of Lk:

▶ it is monotone
▶ for each n ⩾ 2 and every f1, . . . , fn ∈ Lk:

Bel
( n∨

i=1
fi

)
⩾

∑
I⊆{1,...n}

I ̸=∅

(−1)|I|+1 Bel
(∧

i∈I
fi

)
.
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Representation of BFs

Theorem
For every belief function Bel on Lk there exists a unique

..1 Borel probability measure µ on B(K) such that

Bel(f) =
∫
K

∥f∥ dµ, f ∈ Lk

..2 belief measure β on B([0, 1]k) such that

Bel(f) = (C)
∫

[0,1]k

f dβ, f ∈ Lk
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Scheme

BF Bel on Lk BM β on B([0, 1]k)

State s on C(K) Probability µ on B(K)

(C)
∫

∥·∥∫∥·∥
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Space of Belief Functions

Theorem
Let Bel be a belief function on Lk. Then the FAE:

▶ Bel is an extreme point of BEL(Lk)

▶ there exists A ∈ K with Bel = BelA
▶ {f ∈ Lk | Bel(f) = 1} is a filter that is

∩
of maximal filters

▶ {f ∈ Lk | Bel(f) = 0} is an ideal that is
∩

of maximal ideals

Compare:
D. Mundici.
Averaging the truth-value in Łukasiewicz logic.
Studia Logica, 55(1):113–127, 1995.
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BF as a Lower Probability

Theorem
For every f ∈ Lk:

Bel(f) = min
{

s(f) | s state on Lk with s ⩾ Bel
}

In the spirit of:
M. Fedel, K. Keimel, F. Montagna, and W. Roth.
Imprecise probabilities, bets and functional analytic methods in
Łukasiewicz logic.
To appear in Forum Mathematicum.
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Second Encounter with Upper Level Sets
▶ every probability (state) of f ∈ Lk is∫

[0,1]k

f dµ =

∫1

0
µ
(
f−1([t, 1])

)
dt

for a Borel probability measure µ on [0, 1]k

▶ every belief of f ∈ Lk is

(C)
∫

[0,1]k

f dν =

∫1

0
ν
(
f−1([t, 1])

)
dt

for a TM capacity ν on [0, 1]k
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Analyzing Upper Level Sets
▶ upper level sets of McNaughton functions:

U :=
{

f−1([t, 1])
∣∣ f ∈ Lk, t ∈ [0, 1]

}
▶ measuring this family determines the state/belief function

▶ but U is NOT a natural domain of a measure/valuation

Is it enough to take R :=
{

f−1(1)
∣∣ f ∈ Lk

}
?
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One-sets of McNaughton Functions

Definition
A rational polyhedron is a finite union of simplices in [0, 1]k with
rational coordinates.

Theorem
There is a 1-1 correspondence between one-sets of McNaughton
functions and rational polyhedra.
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Rational Polyhedra

R = the set of all rational polyhedra

▶ R is a lattice of subsets of [0, 1]k closed under pointwise ∪, ∩

▶ there are many disjoint pairs A1,A2 ∈ R

▶ there are enough A ∈ R to approximate K ∈ K:

K =
∩

{ A ∈ R | A ⊇ K }
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Lattices of Subsets
▶ the usual algebras for measures are Boolean (σ)-algebras
▶ the usual extension procedures exist for Boolean rings…
▶ …but extension of set functions from lattices is possible!

Example
K compact subsets of [0, 1]k
R rational polyhedra in [0, 1]k

∅, [0, 1]k ∈ K,R ⇒ the generated Boolean ring is a BA

Is a function on R extendable to a Borel probability measure?
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Not Hopeless at All!

Theorem (Mundici)
For each k = 1, 2, . . . , the k-dimensional rational measure (of
k-dimensional rational polyhedra) on R extends to Lebesgue
measure on [0, 1]k.

D. Mundici.
Measure theory in the geometry of GL(n,Z)⋉ Zn

arXiv:1102.0897v1 [math.GN]

Which functions on R extend to Borel probability measures?
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Functions on Lattices
Definition
Let µ : R → [0, 1] be s.t. µ(∅) = 0, µ

(
[0, 1]k

)
= 1. Then µ is

▶ modular if µ(A ∪ B) + µ(A ∩ B) = µ(A) + µ(B)
▶ monotone if A ⊆ B ⇒ µ(A) ⩽ µ(B)
▶ valuation if it is modular and monotone

▶ continuous if, for each A1 ⊇ A2 ⊇ · · · with
∩∞

n=1 An ∈ R

µ

( ∞∩
n=1

An

)
= lim

n→∞µ(An)

▶ tight if, for each pair s.t. A ⊆ B,

µ(A) + sup { µ(C) | C ⊆ B \ A, C ∈ R } = µ(B)
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Intermezzo 1

Theorem (Smiley-Horn-Tarski Theorem)
Every valuation on R has a unique extension to a finitely additive
probability measure on the least algebra of subsets containing R.

▶ extension of real modular functions
▶ the extension is essentially finitely additive
▶ it does NOT preserve continuity of valuations!

The continuity must be incorporated into the extension.
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Intermezzo 2: Extension from K

Theorem
If µ : K → [0,∞) is tight, then it has a unique extension to a Borel
probability measure.

Extension
..1 for each A ⊆ [0, 1]k let

µ̂(A) := sup { µ(B) | B ⊆ A, B ∈ K }

..2 verify that the restriction of µ̂ to Borel sets is a measure
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Extension from R: Finally!

Theorem
If µ : R → [0, 1] is tight, then:

▶ µ is monotone, modular, and upper continuous
▶ µ has a unique extension to a Borel probability measure

Extension
..1 for each A ∈ K let

µ̄(A) := inf { µ(B) | B ⊇ A, B ∈ R }

..2 verify that µ̄ is tight on the lattice K

..3 use the theorem of Kisyński
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Summary

Theorem (Representing states)
There is a 1-1 correspondence between

▶ states on Lk
▶ tight measures on R

Theorem (Representing BFs)
There is a 1-1 correspondence between

▶ BFs on Lk
▶ TM capacities on K
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Open Problems
AXIOMATIZATION

▶ Does every totally monotone function on an MV-algebra
possess generalized Möbius transform?

REPRESENTATION
▶ Can we extend the duality states/Borel probabilities to

MV-CLPs/BA-CLPs?
▶ By using capacities on upper level sets?
▶ Is state on any MV-algebra M determined by measuring{

f−1(1)
∣∣ f ∈ M

}
?
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