A modal logic for belief functions on MV-algebras

Tommaso Flaminio Lluís Godo Enrico Marchioni

Artificial Intelligence Research Institute (IIIA - CSIC), Campus UAB, Spain.

Algebraic Semantics for Uncertainty and Vagueness Salerno, May 2011

T. Flaminio, L. Godo, E. Marchioni (IIIA)

ASVU, Salerno 2011

-4 ∃ ►

Outline

2 Logical approach: $FP(\Lambda_k, k)$ and $FP(C\Lambda_k, k)$

3 Semantics for the modal logics $FP(\Lambda_k, k)$ and $FP(C\Lambda_k, k)$

- Probabilistic models
- Belief function models

< ロト < 同ト < ヨト < ヨト

Belief functions on Boolean algebras

Let X be a finite set (the *frame of discernment*) and let $m : \mathcal{P}(X) \to [0, 1]$ be a map such that

$$\sum_{A\subseteq X} m(A) = 1$$
, and $m(\emptyset) = 0$.

The map *m* is called the *mass assignment*, and the *belief function* over $\mathcal{P}(X)$ defined from *m* is the map $\mathbf{b}_m : \mathcal{P}(X) \to [0, 1]$ such that for every $A \in \mathcal{P}(X)$

$$\mathbf{b}_m(A) = \sum_{B \subseteq A} m(B).$$

Belief functions on Boolean algebras

Let X be a finite set (the *frame of discernment*) and let $m : \mathcal{P}(X) \to [0, 1]$ be a map such that

$$\sum_{A\subseteq X} m(A) = 1$$
, and $m(\emptyset) = 0$.

The map *m* is called the *mass assignment*, and the *belief function* over $\mathcal{P}(X)$ defined from *m* is the map $\mathbf{b}_m : \mathcal{P}(X) \to [0, 1]$ such that for every $A \in \mathcal{P}(X)$

$$\mathbf{b}_m(A) = \sum_{B \subseteq A} m(B).$$

A subset $A \subseteq X$ such that m(A) > 0 is said to be a *focal element*, and clearly the belief function \mathbf{b}_m is defined from the restriction of *m* over the focal elements.

Notice that every mass assignment m on $\mathcal{P}(X)$ induces a probability measure \mathbf{P}_m on $\mathcal{P}(\mathcal{P}(X))$. Therefore, given a mass assignment m, for every $A \subseteq X$, we can equivalently define

$$\mathbf{b}_m(\mathbf{A})=\mathbf{P}_m(\beta_{\mathbf{A}}),$$

where $\beta_A = \{B \mid B \subseteq A\}$, or as membership function on $\mathcal{P}(\mathcal{P}(X))$

$$eta_{\mathcal{A}}: B \in \mathcal{P}(X) \mapsto egin{cases} 1 & ext{if } B \subseteq \mathcal{A} \ 0 & ext{otherwise,} \end{cases}$$

* 伊ト * ヨト * ヨ

A subset $A \subseteq X$ such that m(A) > 0 is said to be a *focal element*, and clearly the belief function \mathbf{b}_m is defined from the restriction of *m* over the focal elements.

Notice that every mass assignment m on $\mathcal{P}(X)$ induces a probability measure \mathbf{P}_m on $\mathcal{P}(\mathcal{P}(X))$. Therefore, given a mass assignment m, for every $A \subseteq X$, we can equivalently define

$$\mathbf{b}_m(A)=\mathbf{P}_m(\beta_A),$$

where $\beta_A = \{B \mid B \subseteq A\}$, or as membership function on $\mathcal{P}(\mathcal{P}(X))$

$$eta_{\mathcal{A}}: \mathcal{B} \in \mathcal{P}(\mathcal{X}) \mapsto \left\{egin{array}{cc} 1 & ext{if } \mathcal{B} \subseteq \mathcal{A} \ 0 & ext{otherwise,} \end{array}
ight.$$

イロト イポト イヨト イヨト

Belief functions on MV-algebras (1)

In order to generalize belief functions to MV-algebras of functions, Kroupa provides the following approach: Consider a finite set *X* and let *M* be the MV-algebra of functions $[0, 1]^X$ (i.e. fuzzy subsets of *X*). For every $a \in M$, let $\hat{\rho}_a : \mathcal{P}(X) \to [0, 1]$ be defined as follows: for every $B \subseteq X$,

 $\hat{\rho}_a(B) = \min\{a(x) : x \in B\}.$

The map $\hat{\rho}_a$ generalizes β_A because if *a* is a Boolean function, then $\hat{\rho}_a = \beta_a$.

Definition

A Kroupa belief function is a map $\hat{\mathbf{b}} : [0, 1]^X \to [0, 1]$ such that, for every $a \in [0, 1]^X$,

$$\hat{\mathbf{b}}(a) = \hat{\mathbf{s}}(\hat{\rho}_a),$$

where $\hat{\mathbf{s}} : [0, 1]^{\mathcal{P}(X)} \rightarrow [0, 1]$ is a state

T. Flaminio, L. Godo, E. Marchioni (IIIA)

Belief functions on MV-algebras (1)

In order to generalize belief functions to MV-algebras of functions, Kroupa provides the following approach: Consider a finite set *X* and let *M* be the MV-algebra of functions $[0, 1]^X$ (i.e. fuzzy subsets of *X*). For every $a \in M$, let $\hat{\rho}_a : \mathcal{P}(X) \to [0, 1]$ be defined as follows: for every $B \subseteq X$,

 $\hat{\rho}_a(B) = \min\{a(x) : x \in B\}.$

The map $\hat{\rho}_a$ generalizes β_A because if *a* is a Boolean function, then $\hat{\rho}_a = \beta_a$.

Definition

A Kroupa belief function is a map $\hat{\mathbf{b}} : [0, 1]^X \to [0, 1]$ such that, for every $a \in [0, 1]^X$,

$$\hat{\mathbf{b}}(a) = \hat{\mathbf{s}}(\hat{\rho}_a),$$

where $\hat{\mathbf{s}} : [0, 1]^{\mathcal{P}(X)} \rightarrow [0, 1]$ is a state

Belief functions on MV-algebras (1)

In order to generalize belief functions to MV-algebras of functions, Kroupa provides the following approach: Consider a finite set *X* and let *M* be the MV-algebra of functions $[0, 1]^X$ (i.e. fuzzy subsets of *X*). For every $a \in M$, let $\hat{\rho}_a : \mathcal{P}(X) \to [0, 1]$ be defined as follows: for every $B \subseteq X$,

 $\hat{\rho}_a(B) = \min\{a(x) : x \in B\}.$

The map $\hat{\rho}_a$ generalizes β_A because if *a* is a Boolean function, then $\hat{\rho}_a = \beta_a$.

Definition

A Kroupa belief function is a map $\hat{\mathbf{b}} : [0, 1]^X \to [0, 1]$ such that, for every $a \in [0, 1]^X$,

$$\hat{\mathbf{b}}(a) = \hat{\mathbf{s}}(\hat{
ho}_a),$$

where $\hat{\boldsymbol{s}} : [0, 1]^{\mathcal{P}(X)} \rightarrow [0, 1]$ is a state.

- Since *X* is finite, one can equivalently define

 $\hat{\mathbf{b}}(a) = \sum_{B \subseteq X} \hat{\rho}_a(B) \cdot \hat{\mathbf{s}}(B).$

- The restriction of $\hat{\mathbf{s}}$ to $\mathcal{P}(X)$ (call it \hat{m}) is a *classical mass* assignment. Therefore a *focal element* is any $B \subseteq X$ such that $\hat{m}(B) > 0$. That is, focal elements are *classical sets*.

• • • • • • • •

- Since X is finite, one can equivalently define

$$\hat{\mathbf{b}}(a) = \sum_{B \subseteq X} \hat{\rho}_a(B) \cdot \hat{\mathbf{s}}(B).$$

- The restriction of $\hat{\mathbf{s}}$ to $\mathcal{P}(X)$ (call it \hat{m}) is a *classical mass* assignment. Therefore a *focal element* is any $B \subseteq X$ such that $\hat{m}(B) > 0$. That is, focal elements are *classical sets*.

→ ∃ →

Belief functions on MV-algebras (2)

We generalize Kroupa's belief functions on $[0, 1]^X$ by allowing focal elements to be elements of the same MV-algebra $[0, 1]^X$. What we need to generalize is the map ρ that measures the degree of inclusion between fuzzy sets.

For every $a \in [0, 1]^X$ we define $\rho_a : [0, 1]^X \to [0, 1]$ as follows: for every $b \in [0, 1]^X$,

$$\rho_{a}(b) = \min\{b(x) \Rightarrow a(x) : x \in X\}.$$

For every $a \in [0, 1]^X$, the map ρ_a generalizes $\hat{\rho}_a$ because for every crisp subset *B* of *X*, $\rho_a(B) = \hat{\rho}_a(B)$.

Definition

A *belief function* on $[0, 1]^X$ is a map $\mathbf{b} : [0, 1]^X \to [0, 1]$ such that, for every $a \in [0, 1]^X$,

$$\mathbf{b}(\mathbf{a}) = \mathbf{s}(\rho_{\mathbf{a}}),$$

where **s** : $[0, 1]^{[0,1]^{\chi}} \to [0, 1]$ is a state.

Belief functions on MV-algebras (2)

We generalize Kroupa's belief functions on $[0, 1]^X$ by allowing focal elements to be elements of the same MV-algebra $[0, 1]^X$. What we need to generalize is the map ρ that measures the degree of inclusion between fuzzy sets.

For every $a \in [0, 1]^X$ we define $\rho_a : [0, 1]^X \to [0, 1]$ as follows: for every $b \in [0, 1]^X$,

$$\rho_a(b) = \min\{b(x) \Rightarrow a(x) : x \in X\}.$$

For every $a \in [0, 1]^X$, the map ρ_a generalizes $\hat{\rho}_a$ because for every crisp subset *B* of *X*, $\rho_a(B) = \hat{\rho}_a(B)$.

Definition

A *belief function* on $[0, 1]^X$ is a map $\mathbf{b} : [0, 1]^X \to [0, 1]$ such that, for every $a \in [0, 1]^X$,

$$\mathbf{b}(\mathbf{a}) = \mathbf{s}(\rho_{\mathbf{a}}),$$

where **s** : $[0, 1]^{[0,1]^{X}} \to [0, 1]$ is a state.

T. Flaminio, L. Godo, E. Marchioni (IIIA)

Belief functions on MV-algebras (2)

We generalize Kroupa's belief functions on $[0, 1]^X$ by allowing focal elements to be elements of the same MV-algebra $[0, 1]^X$. What we need to generalize is the map ρ that measures the degree of inclusion between fuzzy sets.

For every $a \in [0, 1]^X$ we define $\rho_a : [0, 1]^X \to [0, 1]$ as follows: for every $b \in [0, 1]^X$,

$$\rho_a(b) = \min\{b(x) \Rightarrow a(x) : x \in X\}.$$

For every $a \in [0, 1]^X$, the map ρ_a generalizes $\hat{\rho}_a$ because for every crisp subset *B* of *X*, $\rho_a(B) = \hat{\rho}_a(B)$.

Definition

A *belief function* on $[0, 1]^X$ is a map $\mathbf{b} : [0, 1]^X \to [0, 1]$ such that, for every $a \in [0, 1]^X$,

$$\mathbf{b}(\mathbf{a}) = \mathbf{s}(\rho_{\mathbf{a}}),$$

where $\boldsymbol{s}:[0,1]^{[0,1]^{X}}\rightarrow [0,1]$ is a state.

Kroupa approach	Our approach
$\hat{\rho}_a$ measures the degree of	ρ_a measures the degree of
inclusion of a crisp set <i>B</i> in the	inclusion of a fuzzy set <i>b</i> in the
fuzzy set <i>a</i>	fuzzy set <i>a</i>
Crisp evidence: <i>B</i> is a crisp set	Fuzzy evidence: <i>b</i> is a fuzzy set.
$\hat{\mathbf{b}}(a) = \hat{\mathbf{s}}(\hat{ ho}_a)$	$\mathbf{b}(a) = \mathbf{s}(ho_a)$
and $\hat{\mathbf{s}}: [0, 1]^{\mathcal{P}(X)} ightarrow [0, 1]$	and $\mathbf{s}: [0,1]^{[0,1]^X} \rightarrow [0,1]$

590

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Logical approach: $FP(\Lambda_k, k)$ and $FP(C\Lambda_k, k)$

The above definitions suggest that a logic for belief functions on MV-events can be introduced by expanding the language of Łukasiewicz logic by two unary modalities:

 A modality □ whose interpretation is intended to capture the behavior of the measure of inclusion ρ̂, or ρ, we are dealing with.

• A modality Pr that respects the axioms of states on MV-algebras. Finally we interpret the *belief* of φ by $Pr(\Box \varphi)$ (a similar approach was used by Godo, Hájek and Esteva to deal with belief functions over Boolean events).

イロト イポト イヨト イヨト

Consider the *k*-valued Łukasiewicz logic expanded with rational truth constants L_k^c .

A L_k^c -Kripke model is a triple $\langle W, e, R \rangle$ where:

- W is a non-empty set of possible worlds,
- for every possible world w, e(⋅, w) is a truth-evaluation of Ł^c_k into S_k,
- $R: W \times W \rightarrow S_k$ is an accessibility relation.

We denote by *Fr* the class of L_k^c -Kripke models.

If the accessibility relation R is crisp (i.e. $R : W \times W \rightarrow \{0, 1\}$), then the model is called a *classical Kripke model*, and we will denote by *CFr* the class of all classical Kripke models.

イロト イヨト イヨト イヨト

Consider the *k*-valued Łukasiewicz logic expanded with rational truth constants L_k^c .

- A $\mathcal{L}_k^{\mathbf{c}}$ -Kripke model is a triple $\langle W, e, R \rangle$ where:
 - W is a non-empty set of possible worlds,
 - for every possible world w, e(⋅, w) is a truth-evaluation of Ł^c_k into S_k,
 - $R: W \times W \rightarrow S_k$ is an accessibility relation.

We denote by *Fr* the class of $\mathbb{E}_k^{\mathbf{c}}$ -Kripke models.

If the accessibility relation R is crisp (i.e. $R : W \times W \rightarrow \{0, 1\}$), then the model is called a *classical Kripke model*, and we will denote by *CFr* the class of all classical Kripke models.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Consider the *k*-valued Łukasiewicz logic expanded with rational truth constants L_k^c .

- A $\mathcal{L}_k^{\mathbf{c}}$ -Kripke model is a triple $\langle W, e, R \rangle$ where:
 - W is a non-empty set of possible worlds,
 - for every possible world w, e(⋅, w) is a truth-evaluation of Ł^c_k into S_k,
 - $R: W \times W \rightarrow S_k$ is an accessibility relation.

We denote by *Fr* the class of L_k^c -Kripke models.

If the accessibility relation *R* is crisp (i.e. $R : W \times W \rightarrow \{0, 1\}$), then the model is called a *classical Kripke model*, and we will denote by *CFr* the class of all classical Kripke models.

イロト 不得 トイヨト イヨト ニヨー

The modal logics Λ_k and $C\Lambda_k$

Bou, Esteva, Godo and Rodriguez introduce the logics $\Lambda(Fr, \pounds_k^c)$ and $\Lambda(CFr, \pounds_k^c)$ by enlarging the language of \pounds_k^c by a unary modality \Box , and defining well formed formulas as usual. Now we are going to consider

the two fragments Λ_k and $C\Lambda_k$ of $\Lambda(Fr, E_k^c)$ and $\Lambda(CFr, E_k^c)$, whose well formed formulas have unnested occurrences of \Box , so to keep the modal logic to be locally finite.

Given a formula ϕ , and a (classical, \Bbbk_k^c)-Kripke model $K = \langle W, e, R \rangle$, for every $w \in W$, we define the truth value of ϕ in K at w as follows:

- If ϕ is a formula of L_k^c , then $\|\phi\|_w = e(\phi, w)$,
- If $\phi = \Box \psi$, then $\|\Box \psi\|_w = \bigwedge_{w' \in W} (R(w, w') \Rightarrow \|\psi\|_{w'})$,
- If ϕ is a compound formula, its truth value is computed the truth functionality.

イロト イポト イヨト イヨト

The modal logics Λ_k and $C\Lambda_k$

Bou, Esteva, Godo and Rodriguez introduce the logics $\Lambda(Fr, \pounds_k^c)$ and $\Lambda(CFr, \pounds_k^c)$ by enlarging the language of \pounds_k^c by a unary modality \Box , and defining well formed formulas as usual. Now we are going to consider the two fragments Λ_k and $C\Lambda_k$ of $\Lambda(Fr, \pounds_k^c)$ and $\Lambda(CFr, \pounds_k^c)$, whose well formed formulas have unnested occurrences of \Box , so to keep the modal logic to be locally finite.

Given a formula ϕ , and a (classical, \pounds_k^c)-Kripke model $K = \langle W, e, R \rangle$, for every $w \in W$, we define the truth value of ϕ in K at w as follows:

• If ϕ is a formula of \mathbb{E}_{k}^{c} , then $\|\phi\|_{w} = e(\phi, w)$,

• If $\phi = \Box \psi$, then $\|\Box \psi\|_w = \bigwedge_{w' \in W} (R(w, w') \Rightarrow \|\psi\|_{w'})$,

• If ϕ is a compound formula, its truth value is computed the truth functionality.

・ロト ・ 同ト ・ ヨト ・ ヨト

The modal logics Λ_k and $C\Lambda_k$

Bou, Esteva, Godo and Rodriguez introduce the logics $\Lambda(Fr, \pounds_k^c)$ and $\Lambda(CFr, \pounds_k^c)$ by enlarging the language of \pounds_k^c by a unary modality \Box , and defining well formed formulas as usual. Now we are going to consider the two fragments Λ_k and $C\Lambda_k$ of $\Lambda(Fr, \pounds_k^c)$ and $\Lambda(CFr, \pounds_k^c)$, whose well formed formulas have unnested occurrences of \Box , so to keep the modal logic to be locally finite.

Given a formula ϕ , and a (classical, ξ_k^c)-Kripke model $K = \langle W, e, R \rangle$, for every $w \in W$, we define the truth value of ϕ in K at w as follows:

- If ϕ is a formula of $\mathcal{L}_{k}^{\mathbf{c}}$, then $\|\phi\|_{w} = e(\phi, w)$,
- If $\phi = \Box \psi$, then $\|\Box \psi\|_{w} = \bigwedge_{w' \in W} (R(w, w') \Rightarrow \|\psi\|_{w'})$,
- If ϕ is a compound formula, its truth value is computed the truth functionality.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Then the logic Λ_k has the following axioms:

- all the axioms for L_k^c ;
- 2 □1;
- $(\Box \varphi \land \Box \psi) \to \Box (\varphi \land \psi);$
- $(\bar{r} \to \varphi) \leftrightarrow (\bar{r} \to \Box \varphi).$

The rules of Λ_k are Modus Ponens, $\{\varphi, \varphi \to \psi\} \vdash \psi$; and Monotonicity, $\varphi \to \psi \vdash \Box \varphi \to \Box \psi$.

The logic $C\Lambda_k$ is Λ_k plus the axiom $\{\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)\}$.

- The logic Λ_k is sound and complete w.r.t. *Fr*.
- The logic $C\Lambda_k$ is sound and complete w.r.t. *CFr*.

(日)

Then the logic Λ_k has the following axioms:

- all the axioms for L_k^c ;
- 2 □1;
- $(\Box \varphi \land \Box \psi) \to \Box (\varphi \land \psi);$
- $(\overline{r} \to \varphi) \leftrightarrow (\overline{r} \to \Box \varphi).$

The rules of Λ_k are Modus Ponens, $\{\varphi, \varphi \to \psi\} \vdash \psi$; and Monotonicity, $\varphi \to \psi \vdash \Box \varphi \to \Box \psi$.

The logic $C\Lambda_k$ is Λ_k plus the axiom $\{\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)\}$.

• The logic Λ_k is sound and complete w.r.t. *Fr*.

• The logic $C\Lambda_k$ is sound and complete w.r.t. *CFr*.

T. Flaminio, L. Godo, E. Marchioni (IIIA)

ASVU, Salerno 2011

Then the logic Λ_k has the following axioms:

- all the axioms for L_k^c ;
- 2 □1;
- $(\Box \varphi \land \Box \psi) \to \Box (\varphi \land \psi);$
- $(\bar{r} \to \varphi) \leftrightarrow (\bar{r} \to \Box \varphi).$

The rules of Λ_k are Modus Ponens, $\{\varphi, \varphi \to \psi\} \vdash \psi$; and Monotonicity, $\varphi \to \psi \vdash \Box \varphi \to \Box \psi$.

The logic $C\Lambda_k$ is Λ_k plus the axiom $\{\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)\}$.

- The logic Λ_k is sound and complete w.r.t. *Fr*.
- The logic $C\Lambda_k$ is sound and complete w.r.t. *CFr*.

Probabilistic logics over Λ_k , and $C\Lambda_k$

The logics $FP(\Lambda_k, \mathbb{L})$ and $FP(C\Lambda_k, \mathbb{L})$ have a language obtained by expanding the language of Λ_k by a unary modality σ . Formulas are those of Λ_k , plus the class \mathfrak{F}^{σ} that includes \mathfrak{F}^{\Box} and satisfies the following: for every $\psi \in \mathfrak{F}^{\Box}$, $\sigma \psi \in \mathfrak{F}^{\sigma}$, and \mathfrak{F}^{σ} is closed under the connectives of \mathbb{L} .

Axioms and rules of $FP(\Lambda_k, \mathbb{L})$ are as follows:

- **1** All the axioms and rules of Λ_k restricted to the formulas in \mathfrak{F}^{\square} ;
- 2 The following axioms for σ (cf. [FG07]):
 - Ο σΤ.
 - 2 $\sigma(\neg \varphi) \leftrightarrow \neg \sigma(\varphi).$
- **③** The rule of Necessitation, $\varphi \vdash \sigma(\varphi)$.

Axioms and rules of $FP(C\Lambda_k, \mathbb{E})$ are as above, replacing the axioms of Λ_k for the formulas in \mathfrak{F}^{\square} , with those of $C\Lambda_k$.

Probabilistic logics over Λ_k , and $C\Lambda_k$

The logics $FP(\Lambda_k, \mathbb{L})$ and $FP(C\Lambda_k, \mathbb{L})$ have a language obtained by expanding the language of Λ_k by a unary modality σ . Formulas are those of Λ_k , plus the class \mathfrak{F}^{σ} that includes \mathfrak{F}^{\Box} and satisfies the following: for every $\psi \in \mathfrak{F}^{\Box}$, $\sigma \psi \in \mathfrak{F}^{\sigma}$, and \mathfrak{F}^{σ} is closed under the connectives of \mathbb{L} .

Axioms and rules of $FP(\Lambda_k, k)$ are as follows:

- All the axioms and rules of Λ_k restricted to the formulas in \mathfrak{F}^{\square} ;
- 2 The following axioms for σ (cf. [FG07]):

$$\sigma(\neg\varphi) \leftrightarrow \neg\sigma(\varphi).$$

- **③** The rule of Necessitation, $\varphi \vdash \sigma(\varphi)$.

Axioms and rules of $FP(C\Lambda_k, \mathbb{L})$ are as above, replacing the axioms of Λ_k for the formulas in \mathfrak{F}^{\square} , with those of $C\Lambda_k$.

Probabilistic logics over Λ_k , and $C\Lambda_k$

The logics $FP(\Lambda_k, k)$ and $FP(C\Lambda_k, k)$ have a language obtained by expanding the language of Λ_k by a unary modality σ . Formulas are those of Λ_k , plus the class \mathfrak{F}^{σ} that includes \mathfrak{F}^{\Box} and satisfies the following: for every $\psi \in \mathfrak{F}^{\Box}$, $\sigma \psi \in \mathfrak{F}^{\sigma}$, and \mathfrak{F}^{σ} is closed under the connectives of Ł.

Axioms and rules of $FP(\Lambda_k, \Bbbk)$ are as follows:

- All the axioms and rules of Λ_k restricted to the formulas in \mathfrak{F}^{\square} :
- 2 The following axioms for σ (cf. [FG07]):

- 3 $\sigma(\varphi \oplus \psi) \leftrightarrow [(\sigma(\varphi) \to \sigma(\psi \& \varphi)) \to \sigma(\psi)].$
- **3** The rule of Necessitation, $\varphi \vdash \sigma(\varphi)$.

Axioms and rules of $FP(C\Lambda_k, k)$ are as above, replacing the axioms of Λ_k for the formulas in \mathfrak{F}^{\square} , with those of $C\Lambda_k$.

Outline

Logical approach: $FP(\Lambda_k, k)$ and $FP(C\Lambda_k, k)$

3

Semantics for the modal logics $FP(\Lambda_k, k)$ and $FP(C\Lambda_k, k)$ • Probabilistic models

Belief function models

Probabilistic models

The first kind of models for $FP(\Lambda_k, k)$ and $FP(C\Lambda_k, k)$ are defined as follows:

Definition

A probabilistic Kripke model is a system

$$M = \langle W, e, R, s \rangle$$

such that its reduct $\langle W, e, R \rangle$ is a \Bbbk_k^c -Kripke model, and $s : \mathfrak{F}_M^\Box \to [0, 1]$ is a state, where $\mathfrak{F}_M^\Box = \{ \|\varphi\|_M : w \in W \mapsto \|\varphi\|_{M,w} : \varphi \in \mathfrak{F}^\Box \}.$

A probabilistic L_k^c -Kripke model such that its reduct $\langle W, e, R \rangle$ is a classical Kripke model, is called a *probabilistic classical Kripke frame*.

イロト イポト イヨト イヨト 二日

Let $M = \langle W, e, R, s \rangle$ be a probabilistic \Bbbk_k^c (classical) Kripke model. For every $\Phi \in \mathfrak{F}^{\sigma}$, and for every $w \in W$, we define the truth value of Φ in M at w inductively as follows:

- If $\Phi \in \mathfrak{F}^{\square}$, then its truth value $\|\Phi\|_{M,w}$ is evaluated in the fragment $\langle W, e, R \rangle$ as we defined in the previous section.
- If $\Phi = \sigma \psi$, then $\|\sigma \psi\|_{M,w} = s(\|\psi\|_M)$.
- If Φ is a compound formula, its truth values is computed by truth functionality.

Theorem (Probabilistic completeness)

(1) The logic $FP(\Lambda_k, k)$ is sound and finitely strong complete with respect to the class of probabilistic k_k^c -Kripke models. (2) The logic $FP(C\Lambda_k, k)$ is sound and finitely strong complete with respect to the class of probabilistic classical Kripke models.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Outline

Belief functions

Logical approach: $FP(\Lambda_k, k)$ and $FP(C\Lambda_k, k)$

Semantics for the modal logics FP(Λ_k,Ł) and FP(CΛ_k,Ł) Probabilistic models

• Belief function models

< ロト < 回 > < 回 > < 回 > < 回</p>

Belief function models

Definition

The set of *belief formulas* (or *B-formulas*) is the subset of \mathfrak{F}^{σ} defined as follows: *atomic belief formulas* are those in the form $\sigma \Box \psi$ (where of course ψ is a formula in $\mathfrak{L}_{k}^{\mathbf{c}}$), that will be henceforth denoted by $B(\psi)$; *compound belief formulas* are defined from atomic ones using the connectives of \mathfrak{L} . The set of belief formulas will be denoted by \mathfrak{F}^{B} .

Let now Ω be the set of all the evaluations of $\Bbbk_k^{\mathbf{c}}$, over the (finite) set of propositional variables V, i.e. $\Omega = (S_k)^V$. For every formula φ without occurrences of modalities (i.e. φ is a formula in the language of $\Bbbk_k^{\mathbf{c}}$), let $\|\varphi\|_{\Omega} : \Omega \to S_k$ be defined as $\|\varphi\|_{\Omega}(w) = w(\varphi)$.

・ロト ・四ト ・ヨト ・ヨト

Definition

A (Kroupa) belief function model is a pair $N = (\Omega, m)$ where Ω is as above, and $m : (S_k)^{\Omega} \to [0, 1]$ ($m : (\{0, 1\})^{\Omega} \to [0, 1]$) satisfies $\sum_{f \in (S_k)^{\Omega}} m(f) = 1$, and $m(\emptyset) = 0$. Then the corresponding belief function bel_m is defined as usual: for every formula φ ,

$$\textit{bel}_{\textit{m}}(arphi) = \sum_{\pmb{g} \in (\pmb{S}_{k})^{\Omega}}
ho_{\|arphi\|_{\Omega}}(\pmb{g}) \cdot \pmb{m}(\pmb{g}).$$

For every belief formula Φ , and every belief function model $N = (\Omega, m)$, Φ is evaluated into *N* a follows:

- If $\Phi = B(\varphi)$ is atomic, then $||B(\varphi)||_N = bel_m(\varphi)$.
- If Φ is compound, then ||Φ||_N is computed by truth functionality as usual.

イロト イポト イヨト イヨト 二日

Theorem

Let Φ be a belief formula. Then for every (Kroupa) belief function model $D = (\Omega, m)$ there exists a (classical) probabilistic Kripke model K = (W, e, R, s) such that Φ , $\|\Phi\|_M = \|\Phi\|_D$, and vice-versa.

Hence, if we limit to belief formulas, and belief theories, then $FP(\Lambda_k, k)$ is sound and finitely complete with respect to the class of belief models. An analogous result holds for $FP(C\Lambda_k, k)$ with respect to Kroupa belief models.

イロト イロト イヨト イヨト

Theorem

Let Φ be a belief formula. Then for every (Kroupa) belief function model $D = (\Omega, m)$ there exists a (classical) probabilistic Kripke model K = (W, e, R, s) such that Φ , $\|\Phi\|_M = \|\Phi\|_D$, and vice-versa.

Hence, if we limit to belief formulas, and belief theories, then $FP(\Lambda_k, k)$ is sound and finitely complete with respect to the class of belief models. An analogous result holds for $FP(C\Lambda_k, k)$ with respect to Kroupa belief models.

イロト イポト イヨト イヨト

- F. Bou, F. Esteva, L. Godo, R. Rodrìguez. On the Minimum Many-Valued Modal Logic over a Finite Residuated Lattice. *Journal of Logic and Computation*, Advance Access published on October 7, 2009; doi:10.1093/logcom/exp062, In Press.
- T. Kroupa. From Probabilities to Belief Functions on MV-Algebras. In Combining Soft Computing and Statistical Methods in Data Analysis, C. Borgelt et al. (Eds.), AISC 77, Springer, pp 387–394, 2010.
- T. Flaminio, L. Godo, E. Marchioni, Belief Functions on MV-algebras of Fuzzy Events Based on Fuzzy Evidence. In *Proceedings of ECSQARU 2011*, W. Liu (Ed.), LNAI 6717, pp. 628–639, 2011.

イロト イポト イヨト イヨト