A General Approach to State-Morphism MV-Algebras

Anatolij DVUREČENSKIJ

Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia E-mail: dvurecen@mat . savba.sk

The talk given at the Algebraic Semantics for Uncertainty and Vagueness May 18-21,
2011, Palazzo Genovese, Salerno - Italy
supported by Slovak-Italian project SK-IT 0016-08.

Quantum Mechanics

- new physics, beginning 20th century

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$
\sigma_{s}(x) \sigma_{s}(y) \geq \hbar>0 .
$$

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$
\sigma_{s}(x) \sigma_{s}(y) \geq \hbar>0 .
$$

x-momentum, y position of elementary particle, s state -probability measure

Quantum Mechanics

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$
\sigma_{s}(x) \sigma_{s}(y) \geq \hbar>0 .
$$

x-momentum, y position of elementary particle, s state -probability measure

- for classical mechanics

$$
\inf _{s}\left(\sigma_{s}(x) \sigma_{s}(y)\right)=0
$$

- Hilbert, 1900, 6th Problem:
- Hilbert, 1900, 6th Problem:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Hilbert, 1900, 6th Problem:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Kolmogorov, probability theory, 1933,
- Hilbert, 1900, 6th Problem:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Kolmogorov, probability theory, 1933,
- G. Birkhoff and J. von Neumann, 1936 quantum logic
- Hilbert, 1900, 6th Problem:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Kolmogorov, probability theory, 1933,
- G. Birkhoff and J. von Neumann, 1936 quantum logic
- C.C. Chang, 1958 MV-algebras
- Hilbert, 1900, 6th Problem:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Kolmogorov, probability theory, 1933,
- G. Birkhoff and J. von Neumann, 1936 quantum logic
- C.C. Chang, 1958 MV-algebras
- J. Łukasiewicz, 1922 many-valued logic

Other Motivations

- psychiatry

Other Motivations

- psychiatry
- compound systems of computers

Other Motivations

- psychiatry
- compound systems of computers
- quantum chemistry

Other Motivations

- psychiatry
- compound systems of computers
- quantum chemistry
- quantum computing

Other Motivations

- psychiatry
- compound systems of computers
- quantum chemistry
- quantum computing
- Bell inequalities

$$
p(a)+p(b)-p(a \wedge b) \leq 1,
$$

Other Motivations

- psychiatry
- compound systems of computers
- quantum chemistry
- quantum computing
- Bell inequalities

$$
p(a)+p(b)-p(a \wedge b) \leq 1,
$$

- $(=p(a \vee b))$ test for a classical system

Quantum structures

- Boolean algebras

Quantum structures

- Boolean algebras
- Orthomodular lattices

Quantum structures

- Boolean algebras
- Orthomodular lattices
- Hilbert space $H, \mathcal{L}(H)$ the system of all closed subspaces of H

Quantum structures

- Boolean algebras
- Orthomodular lattices
- Hilbert space $H, \mathcal{L}(H)$ the system of all closed subspaces of H
- Orthomodular posets

Quantum structures

- Boolean algebras
- Orthomodular lattices
- Hilbert space $H, \mathcal{L}(H)$ the system of all closed subspaces of H
- Orthomodular posets
- D-posets -Kôpka and Chovanec 1992

Quantum structures

- Boolean algebras
- Orthomodular lattices
- Hilbert space $H, \mathcal{L}(H)$ the system of all closed subspaces of H
- Orthomodular posets
- D-posets -Kôpka and Chovanec 1992
- effect algebras

Quantum structures

- Boolean algebras
- Orthomodular lattices
- Hilbert space $H, \mathcal{L}(H)$ the system of all closed subspaces of H
- Orthomodular posets
- D-posets -Kôpka and Chovanec 1992
- effect algebras
- MV-algebras - compatibility

States on Algebraic Structures

- G. Boole: if M-alg. str. $C=A+B$, and P is a probability, then $P(A+B)=P(A)+P(B)$;

States on Algebraic Structures

- G. Boole: if M-alg. str. $C=A+B$, and P is a probability, then $P(A+B)=P(A)+P(B)$;
- the operation + is a partial one on M

States on Algebraic Structures

- G. Boole: if M-alg. str. $C=A+B$, and P is a probability, then $P(A+B)=P(A)+P(B)$;
- the operation + is a partial one on M
- M is a $\mathrm{BA}, A+B:=A \cup B$ whenever $A \cap B=\emptyset \Leftrightarrow A \leq B^{\prime}$

States on Algebraic Structures

- G. Boole: if M-alg. str. $C=A+B$, and P is a probability, then $P(A+B)=P(A)+P(B)$;
- the operation + is a partial one on M
- M is a BA, $A+B:=A \cup B$ whenever $A \cap B=\emptyset \Leftrightarrow A \leq B^{\prime}$
- A and B mutually excluding - summable orthogonal

States on Algebraic Structures

- G. Boole: if M-alg. str. $C=A+B$, and P is a probability, then $P(A+B)=P(A)+P(B)$;
- the operation + is a partial one on M
- M is a BA, $A+B:=A \cup B$ whenever $A \cap B=\emptyset \Leftrightarrow A \leq B^{\prime}$
- A and B mutually excluding - summable orthogonal
- state or FAS on an algebraic structure

$$
\begin{align*}
& \left(M ;+,^{\prime}, 0,1\right), s: M \rightarrow[0,1] \text { (i) } s(1)=1, \tag{ii}\\
& s(a+b)=s(a)+s(b) \text { if } a+b \in M
\end{align*}
$$

States on $\mathcal{L}(H)$

- $\mathcal{L}(H), \mathcal{E}(H)=\{A \in \mathcal{B}(H): O \leq A \leq I\}$

States on $\mathcal{L}(H)$

$$
\begin{aligned}
& \text { - } \mathcal{L}(H), \mathcal{E}(H)=\{A \in \mathcal{B}(H): O \leq A \leq I\} \\
& \quad s_{\phi}(M)=\left(P_{M} \phi, \phi\right), M \in \mathcal{L}(H), \phi \in H,\|\phi\|=1 \\
& \quad s(M)=\sum_{i} \lambda_{i} s_{\phi_{i}}(M)=\operatorname{tr}\left(T P_{M}\right), M \in \mathcal{L}(H) .
\end{aligned}
$$

Gleason theorem, 1957, $3 \leq \operatorname{dim} H \leq \aleph_{0}$,

States on $\mathcal{L}(H)$

- $\mathcal{L}(H), \mathcal{E}(H)=\{A \in \mathcal{B}(H): O \leq A \leq I\}$
- $s_{\phi}(M)=\left(P_{M} \phi, \phi\right), M \in \mathcal{L}(H), \phi \in H,\|\phi\|=1$

$$
s(M)=\sum_{i} \lambda_{i} s_{\phi_{i}}(M)=\operatorname{tr}\left(T P_{M}\right), M \in \mathcal{L}(H) .
$$

Gleason theorem, 1957, $3 \leq \operatorname{dim} H \leq \aleph_{0}$,

- If s is a FAS $\mathcal{L}(H)$, Aarnes

$$
s=\lambda s_{1}+(1-\lambda) s_{2}
$$

s_{1} is a σ-additive, s_{2} a FAS vanishing on each finite-dimensional subspace of H°

Applications of Gleason's Theorem

- $s(M)=\operatorname{tr}\left(T P_{M}\right), M \in \mathcal{L}(H)$

Applications of Gleason's Theorem

- $s(M)=\operatorname{tr}\left(T P_{M}\right), M \in \mathcal{L}(H)$
- $\operatorname{dim} H=2$ - Gleason' Theorem not valid

Applications of Gleason's Theorem

- $s(M)=\operatorname{tr}\left(T P_{M}\right), M \in \mathcal{L}(H)$
- $\operatorname{dim} H=2$ - Gleason' Theorem not valid
- Gleason's Theorem holds for nonseparable iff $\operatorname{dim} H$ is a non-measurable cardinal

Applications of Gleason's Theorem

- $s(M)=\operatorname{tr}\left(T P_{M}\right), M \in \mathcal{L}(H)$
- $\operatorname{dim} H=2$ - Gleason' Theorem not valid
- Gleason's Theorem holds for nonseparable iff $\operatorname{dim} H$ is a non-measurable cardinal
- Ulam, I - non-measurable cardinal if there exists no probability measure on 2^{I} vanishing on each $i \in I$.

Applications of Gleason's Theorem

- $s(M)=\operatorname{tr}\left(T P_{M}\right), M \in \mathcal{L}(H)$
- $\operatorname{dim} H=2$ - Gleason' Theorem not valid
- Gleason's Theorem holds for nonseparable iff $\operatorname{dim} H$ is a non-measurable cardinal
- Ulam, I - non-measurable cardinal if there exists no probability measure on 2^{I} vanishing on each $i \in I$.
- von Neumann algebra V - extension from FAS from $\mathcal{L}(V)$ to V.

States on prehilbert Q.L.

- S-prehilbert - inner product space ($(, \cdot)$

States on prehilbert Q.L.

- S-prehilbert - inner product space (\cdot, .)
- $\mathcal{E}(S)=\left\{M \subseteq S: M+M^{\perp}=S\right\}$ OMP

States on prehilbert Q.L.

- S-prehilbert - inner product space (\cdot, \cdot)
- $\mathcal{E}(S)=\left\{M \subseteq S: M+M^{\perp}=S\right\}$ OMP
- $\mathcal{F}(S)=\left\{M \subseteq S: M^{\perp \perp}=M\right\}$

States on prehilbert Q.L.

- S-prehilbert - inner product space ($(, \cdot)$
- $\mathcal{E}(S)=\left\{M \subseteq S: M+M^{\perp}=S\right\}$ OMP
- $\mathcal{F}(S)=\left\{M \subseteq S: M^{\perp \perp}=M\right\}$
- $\mathcal{E}(S) \subseteq \mathcal{F}(S)$

States on prehilbert Q.L.

- S-prehilbert - inner product space (\cdot, \cdot)
- $\mathcal{E}(S)=\left\{M \subseteq S: M+M^{\perp}=S\right\}$ OMP
- $\mathcal{F}(S)=\left\{M \subseteq S: M^{\perp \perp}=M\right\}$
- $\mathcal{E}(S) \subseteq \mathcal{F}(S)$
- S complete iff $\mathcal{F}(S)$ OML

States on prehilbert Q.L.

- S-prehilbert - inner product space (\cdot, \cdot)
- $\mathcal{E}(S)=\left\{M \subseteq S: M+M^{\perp}=S\right\}$ OMP
- $\mathcal{F}(S)=\left\{M \subseteq S: M^{\perp \perp}=M\right\}$
- $\mathcal{E}(S) \subseteq \mathcal{F}(S)$
- S complete iff $\mathcal{F}(S)$ OML
- S complete iff $\mathcal{F}(S) \sigma$-OMP

States on prehilbert Q.L.

- S-prehilbert - inner product space (\cdot, \cdot)
- $\mathcal{E}(S)=\left\{M \subseteq S: M+M^{\perp}=S\right\}$ OMP
- $\mathcal{F}(S)=\left\{M \subseteq S: M^{\perp \perp}=M\right\}$
- $\mathcal{E}(S) \subseteq \mathcal{F}(S)$
- S complete iff $\mathcal{F}(S)$ OML
- S complete iff $\mathcal{F}(S) \sigma$-OMP
- S complete iff $\mathcal{E}(S)=\mathcal{F}(S)$

States on MV-algebras

- M - MV-algebra, we define a partial operation + , via $a+b$ is defined iff $a \leq b^{*}$ iff $a \odot b=0$, then $a+b:=a \oplus b$.

States on MV-algebras

- M - MV-algebra, we define a partial operation + , via $a+b$ is defined iff $a \leq b^{*}$ iff $a \odot b=0$, then $a+b:=a \oplus b$.
- + restriction of the ℓ-group addition

States on MV-algebras

- M - MV-algebra, we define a partial operation + , via $a+b$ is defined iff $a \leq b^{*}$ iff $a \odot b=0$, then $a+b:=a \oplus b$.
- + restriction of the ℓ-group addition
- state- $s: M \rightarrow[0,1]$, (i) $s(a+b)=s(a)+s(b)$, (ii) $s(1)=1$.

States on MV-algebras

- M - MV-algebra, we define a partial operation + , via $a+b$ is defined iff $a \leq b^{*}$ iff $a \odot b=0$, then $a+b:=a \oplus b$.
- + restriction of the ℓ-group addition
- state- $s: M \rightarrow[0,1],(i) s(a+b)=s(a)+s(b)$,
(ii) $s(1)=1$.
- $\mathcal{S}(M)$-set of states. $\mathcal{S}(M) \neq \emptyset$.

States on MV-algebras

- M - MV-algebra, we define a partial operation + , via $a+b$ is defined iff $a \leq b^{*}$ iff $a \odot b=0$, then $a+b:=a \oplus b$.
- + restriction of the ℓ-group addition
- state- $s: M \rightarrow[0,1]$, (i) $s(a+b)=s(a)+s(b)$, (i) $s(1)=1$.
- $\mathcal{S}(M)$-set of states. $\mathcal{S}(M) \neq \emptyset$.
- extremal state $s=\lambda s_{1}+(1-\lambda) s_{2}$ for $\lambda \in(0,1) \Rightarrow s=s_{1}=s_{2}$.
- $\left\{s_{\alpha}\right\} \rightarrow s$ iff $\lim _{\alpha} s_{\alpha}(a) \rightarrow s(a), a \in M$.
- $\left\{s_{\alpha}\right\} \rightarrow s$ iff $\lim _{\alpha} s_{\alpha}(a) \rightarrow s(a), a \in M$.
- $\mathcal{S}(E)$ - Hausdorff compact topological space, $\partial_{e} \mathcal{S}(M)$
- $\left\{s_{\alpha}\right\} \rightarrow s$ iff $\lim _{\alpha} s_{\alpha}(a) \rightarrow s(a), a \in M$.
- $\mathcal{S}(E)$ - Hausdorff compact topological space, $\partial_{e} \mathcal{S}(M)$
- Krein-Mil'man $\mathcal{S}(M)=\operatorname{Cl}\left(\operatorname{ConHul}\left(\partial_{e} \mathcal{S}(M)\right)\right.$
- $\left\{s_{\alpha}\right\} \rightarrow s$ iff $\lim _{\alpha} s_{\alpha}(a) \rightarrow s(a), a \in M$.
- $\mathcal{S}(E)$ - Hausdorff compact topological space, $\partial_{e} \mathcal{S}(M)$
- Krein-Mil'man $\mathcal{S}(M)=\operatorname{Cl}\left(\operatorname{ConHul}\left(\partial_{e} \mathcal{S}(M)\right)\right.$
- s is extremal iff $s(a \wedge b)=\min \{s(a), s(b)\}$ iff s is MV-homomorphism iff $\operatorname{Ker}(s)$ is a maximal ideal.
- $\left\{s_{\alpha}\right\} \rightarrow s$ iff $\lim _{\alpha} s_{\alpha}(a) \rightarrow s(a), a \in M$.
- $\mathcal{S}(E)$ - Hausdorff compact topological space, $\partial_{e} \mathcal{S}(M)$
- Krein-Mil'man $\mathcal{S}(M)=\operatorname{Cl}\left(\operatorname{ConHul}\left(\partial_{e} \mathcal{S}(M)\right)\right.$
- s is extremal iff $s(a \wedge b)=\min \{s(a), s(b)\}$ iff s is MV-homomorphism iff $\operatorname{Ker}(s)$ is a maximal ideal.
- $s \leftrightarrow \operatorname{Ker}(s)$, 1-1 correspondence
- every maximal ideal is a kernel of a unique state
- every maximal ideal is a kernel of a unique state
- Kernel-hull topology $=\partial_{e} \mathcal{S}(E)$ set of extremal states
- every maximal ideal is a kernel of a unique state
- Kernel-hull topology $=\partial_{e} \mathcal{S}(E)$ set of extremal states
- Kroupa- Panti $a \mapsto \hat{a}, \hat{a}(s):=s(a)$,

$$
s(a)=\int_{\partial_{\epsilon} \mathcal{S}(M)} \hat{a}(t) d \mu_{s}(t)
$$

- every maximal ideal is a kernel of a unique state
- Kernel-hull topology $=\partial_{e} \mathcal{S}(E)$ set of extremal states
- Kroupa- Panti $a \mapsto \hat{a}, \hat{a}(s):=s(a)$,

$$
s(a)=\int_{\partial_{\epsilon} \mathcal{S}(M)} \hat{a}(t) d \mu_{s}(t)
$$

- μ_{s} - unique Borel σ-additive probability measure on $\mathcal{B}(\mathcal{S}(M))$ such that $\ldots(\partial S(M))=1$

State MV-algebras

- MV-algebras with a state are not universal algebras, and therefore, the do not provide an algebraizable logic for probability reasoning over many-valued events

State MV-algebras

- MV-algebras with a state are not universal algebras, and therefore, the do not provide an algebraizable logic for probability reasoning over many-valued events
- Flaminio-Montagna - introduce an algebraizable logic whose equivalent algebraic semantics is the variety of state MV-algebras

State MV-algebras

- MV-algebras with a state are not universal algebras, and therefore, the do not provide an algebraizable logic for probability reasoning over many-valued events
- Flaminio-Montagna - introduce an algebraizable logic whose equivalent algebraic semantics is the variety of state MV-algebras
- A state MV-algebra is a pair $(M, \tau), M$ -MV-algebra, τ unary operation on A s.t.
- $\tau(1)=1$
- $\tau(1)=1$
- $\tau(x \oplus y)=\tau(x) \oplus \tau(t \ominus(x \odot y))$
- $\tau(1)=1$
- $\tau(x \oplus y)=\tau(x) \oplus \tau(t \ominus(x \odot y))$
- $\tau\left(x^{*}\right)=\tau(x)^{*}$
- $\tau(1)=1$
- $\tau(x \oplus y)=\tau(x) \oplus \tau(t \ominus(x \odot y))$
- $\tau\left(x^{*}\right)=\tau(x)^{*}$
- $\tau(\tau(x) \oplus \tau(y))=\tau(x) \oplus \tau(y)$
- $\tau(1)=1$
- $\tau(x \oplus y)=\tau(x) \oplus \tau(t \ominus(x \odot y))$
- $\tau\left(x^{*}\right)=\tau(x)^{*}$
- $\tau(\tau(x) \oplus \tau(y))=\tau(x) \oplus \tau(y)$
- τ-internal operator, state operator

Properties

$\tau^{2}=\tau$

Properties

- $\tau^{2}=\tau$
- $\tau(M)$ is an MV-algebra and τ on $\tau(M)$ identity

Properties

- $\tau^{2}=\tau$
- $\tau(M)$ is an MV-algebra and τ on $\tau(M)$ identity
- $\tau(x+y)=\tau(x)+\tau(y)$

Properties

- $\tau^{2}=\tau$
- $\tau(M)$ is an MV-algebra and τ on $\tau(M)$ identity
- $\tau(x+y)=\tau(x)+\tau(y)$
- $\tau(x \odot y)=\tau(x) \odot \tau(y)$ if $x \odot y=0$.

Properties

- $\tau^{2}=\tau$
- $\tau(M)$ is an MV-algebra and τ on $\tau(M)$ identity
- $\tau(x+y)=\tau(x)+\tau(y)$
- $\tau(x \odot y)=\tau(x) \odot \tau(y)$ if $x \odot y=0$.
- if (M, τ) is s.i., then $\tau(M)$ is a chain

Properties

- $\tau^{2}=\tau$
- $\tau(M)$ is an MV-algebra and τ on $\tau(M)$ identity
- $\tau(x+y)=\tau(x)+\tau(y)$
- $\tau(x \odot y)=\tau(x) \odot \tau(y)$ if $x \odot y=0$.
- if (M, τ) is s.i., then $\tau(M)$ is a chain
- if (M, τ) is s.i., then M is not necessarily a chain
- F-filter, τ-filter if $\tau(F) \subseteq F$.
- F-filter, τ-filter if $\tau(F) \subseteq F$.
- 1-1 correspondence congruences and τ-filters
- F-filter, τ-filter if $\tau(F) \subseteq F$.
- 1-1 correspondence congruences and τ-filters
- $M=[0,1] \times[0,1], \tau(x, y)=(x, x)$ s.i. - not chain
- F-filter, τ-filter if $\tau(F) \subseteq F$.
- 1-1 correspondence congruences and τ-filters
- $M=[0,1] \times[0,1], \tau(x, y)=(x, x)$ s.i. - not chain
- state-morphism $(M, \tau), \tau$ is an idempotent endomorphism
- F-filter, τ-filter if $\tau(F) \subseteq F$.
- 1-1 correspondence congruences and τ-filters
- $M=[0,1] \times[0,1], \tau(x, y)=(x, x)$ s.i. - not chain
- state-morphism $(M, \tau), \tau$ is an idempotent endomorphism
- s state on $M,[0,1] \otimes M$,
$\tau_{s}(\alpha \otimes a):=\alpha \cdot s(a) \otimes 1$
- $\left([0,1] \otimes, \tau_{s}\right)$ is an SMV-algebra.
$\left([0,1] \otimes, \tau_{s}\right)$ is an SMV-algebra. $\left([0,1] \otimes, \tau_{s}\right)$ is an SMMV-algebra iff s is an extremal state
- $\left([0,1] \otimes, \tau_{s}\right)$ is an SMV-algebra.
- $\left([0,1] \otimes, \tau_{s}\right)$ is an SMMV-algebra iff s is an extremal state
- if M is a chain, every SMV-algebra (M, τ) is an SMMV-algebra
- $\left([0,1] \otimes, \tau_{s}\right)$ is an SMV-algebra.
- $\left([0,1] \otimes, \tau_{s}\right)$ is an SMMV-algebra iff s is an extremal state
- if M is a chain, every SMV-algebra (M, τ) is an SMMV-algebra
- if $\tau(M) \in \mathrm{V}\left(S_{1}, \ldots, S_{n}\right)$ for some $n \geq 1$, then (M, τ) is an SMMV-algebra
- $\left([0,1] \otimes, \tau_{s}\right)$ is an SMV-algebra.
- $\left([0,1] \otimes, \tau_{s}\right)$ is an SMMV-algebra iff s is an extremal state
- if M is a chain, every SMV-algebra (M, τ) is an SMMV-algebra
- if $\tau(M) \in \mathrm{V}\left(S_{1}, \ldots, S_{n}\right)$ for some $n \geq 1$, then (M, τ) is an SMMV-algebra
- Iff $\tau((n+1) x)=\tau(n x)$

State BL-algebras

- M - BL-algebra. A map $\tau: M \rightarrow M$ s.t.
$(1)_{B L} \tau(0)=0$;
$(2)_{B L} \tau(x \rightarrow y)=\tau(x) \rightarrow \tau(x \wedge y)$;
$(3)_{B L} \tau(x \odot y)=\tau(x) \odot \tau(x \rightarrow(x \odot y)) ;$
$(4)_{B L} \tau(\tau(x) \odot \tau(y))=\tau(x) \odot \tau(y) ;$
$(5)_{B L} \tau(\tau(x) \rightarrow \tau(y))=\tau(x) \rightarrow \tau(y)$
state-operator on M, pair (M, τ) - state BL-algebra

State BL-algebras

- M - BL-algebra. A map $\tau: M \rightarrow M$ s.t.
$(1)_{B L} \tau(0)=0$;
$(2)_{B L} \tau(x \rightarrow y)=\tau(x) \rightarrow \tau(x \wedge y)$;
$(3)_{B L} \tau(x \odot y)=\tau(x) \odot \tau(x \rightarrow(x \odot y))$;
$(4)_{B L} \tau(\tau(x) \odot \tau(y))=\tau(x) \odot \tau(y) ;$
$(5)_{B L} \tau(\tau(x) \rightarrow \tau(y))=\tau(x) \rightarrow \tau(y)$
state-operator on M, pair (M, τ) - state BL-algebra
- If $\tau: M \rightarrow M$ is a BL-endomorphism s.t.
$\tau \circ \tau=\tau,-$ state-morphism operator and the couple (M, τ) - statẹ-mǫphiṣm BL-algebra.
- every state operator on a linear BL-algebra is a state-morphism
- every state operator on a linear BL-algebra is a state-morphism
- Example 0.2 Let M be a BL-algebra. On $M \times M$ we define two operators, τ_{1} and τ_{2}, as follows

$$
\tau_{1}(a, b)=(a, a), \quad \tau_{2}(a, b)=(b, b), \quad(a, b) \in \underset{(2.0)}{M \times M .}
$$

Then τ_{1} and τ_{2} are two state-morphism operators on $M \times M$.

- every state operator on a linear BL-algebra is a state-morphism
- Example 0.3 Let M be a BL-algebra. On $M \times M$ we define two operators, τ_{1} and τ_{2}, as follows

$$
\tau_{1}(a, b)=(a, a), \quad \tau_{2}(a, b)=(b, b), \quad(a, b) \in \underset{(2.0)}{M \times M .}
$$

Then τ_{1} and τ_{2} are two state-morphism operators on $M \times M$.

- $\operatorname{Ker}(\tau)=\{a \in M: \tau(a)=1\}$.
- We say that two subhoops, A and B, of a BL-algebra M have the disjunction property if for all $x \in A$ and $y \in B$, if $x \vee y=1$, then either $x=1$ or $y=1$.
- We say that two subhoops, A and B, of a BL-algebra M have the disjunction property if for all $x \in A$ and $y \in B$, if $x \vee y=1$, then either $x=1$ or $y=1$.
- Lemma 0.5 Suppose that (M, τ) is a state BL-algebra. Then:
(1) If τ is faithful, then (M, τ) is a subdirectly irreducible state BL-algebra if and only if $\tau(M)$ is a subdirectly irreducible BL-algebra.
Now let (M, τ) be subdirectly irreducible. Then:
-(2) $\operatorname{Ker}(\tau)$ is (either trivial or) a subdirectly irreducible hoop.
(3) $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property.
-(2) $\operatorname{Ker}(\tau)$ is (either trivial or) a subdirectly irreducible hoop.
(3) $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property.
- Theorem 0.7 Let (M, τ) be a state BL-algebra satisfying conditions (1), (2) and (3) in the last Lemma. Then (M, τ) is subdirectly irreducible.

Theorem 0.8 A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.

Theorem 0.9 A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.

- (i) M is linear, $\tau=\operatorname{id}_{M}$, and the BL-reduct M is a subdirectly irreducible BL-algebra.
- Theorem 0.10 A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.
- (i) M is linear, $\tau=\operatorname{id}_{M}$, and the BL-reduct M is a subdirectly irreducible BL-algebra.
- (ii) The state-morphism operator τ is not faithful, M has no nontrivial Boolean elements, and the BL-reduct M of (M, τ) is a local BL-algebra, $\operatorname{Ker}(\tau)$ is a subdirectly irreducible irreducible hoop, and $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property
- Theorem 0.11 A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.
- (i) M is linear, $\tau=\operatorname{id}_{M}$, and the BL-reduct M is a subdirectly irreducible BL-algebra.
- (ii) The state-morphism operator τ is not faithful, M has no nontrivial Boolean elements, and the BL-reduct M of (M, τ) is a local BL-algebra, $\operatorname{Ker}(\tau)$ is a subdirectly irreducible irreducible hoop, and $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property
- Theorem 0.12 A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.
- (i) M is linear, $\tau=\operatorname{id}_{M}$, and the BL-reduct M is a subdirectly irreducible BL-algebra.
- (ii) The state-morphism operator τ is not faithful, M has no nontrivial Boolean elements, and the BL-reduct M of (M, τ) is a local BL-algebra, $\operatorname{Ker}(\tau)$ is a subdirectly irreducible irreducible hoop, and $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property
- Theorem 0.13 A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.
- (i) M is linear, $\tau=\operatorname{id}_{M}$, and the BL-reduct M is a subdirectly irreducible BL-algebra.
- (ii) The state-morphism operator τ is not faithful, M has no nontrivial Boolean elements, and the BL-reduct M of (M, τ) is a local BL-algebra, $\operatorname{Ker}(\tau)$ is a subdirectly irreducible irreducible hoop, and $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property
- Moreover, M is linearly ordered if and only if $\operatorname{Rad}_{1}(M)$ is linearly ordered, and in such a case, M is a subdirectly irreducible BL-algebra such that if F is the smallest nontrivial state-filter for (M, τ), then F is the smallest nontrivial BL-filter for M.
- Moreover, M is linearly ordered if and only if $\operatorname{Rad}_{1}(M)$ is linearly ordered, and in such a case, M is a subdirectly irreducible BL-algebra such that if F is the smallest nontrivial state-filter for (M, τ), then F is the smallest nontrivial BL-filter for M.
- If $\operatorname{Rad}(M)=\operatorname{Ker}(\tau)$, then M is linearly ordered.
(iii) The state-morphism operator τ is not faithful, M has a nontrivial Boolean element. There are a linearly ordered BL-algebra A, a subdirectly irreducible BL-algebra B, and an injective BL-homomorphism $h: A \rightarrow B$ such that (M, τ) is isomorphic as a state-morphism BL-algebra with the state-morphism
BL-algebra $\left(A \times B, \tau_{h}\right)$, where $\tau_{h}(x, y)=(x, h(x))$ for any $(x, y) \in A \times B$.

Varieties of SMMV-algebras

- Komori - countably many subvarieties of MV-algebras

Varieties of SMMV-algebras

- Komori - countably many subvarieties of MV-algebras
- \mathcal{V}-variety of MV-algebras, \mathcal{V}_{τ}-system of SMMV-algebras (M, τ) s.t $M \in \mathcal{V} \in \mathcal{V}$.

Varieties of SMMV-algebras

- Komori - countably many subvarieties of MV-algebras
- \mathcal{V}-variety of MV-algebras, \mathcal{V}_{τ}-system of SMMV-algebras (M, τ) s.t $M \in \mathcal{V} \in \mathcal{V}$.
- $D(M):=\left(M \times M, \tau_{M}\right)$

Varieties of SMMV-algebras

- Komori - countably many subvarieties of MV-algebras
- \mathcal{V}-variety of MV-algebras, \mathcal{V}_{τ}-system of SMMV-algebras (M, τ) s.t $M \in \mathcal{V} \in \mathcal{V}$.
- $D(M):=\left(M \times M, \tau_{M}\right)$
- $\mathrm{V}(D)=\mathrm{V}(M)_{\tau}$

Varieties of SMMV-algebras

- Komori - countably many subvarieties of MV-algebras
- \mathcal{V}-variety of MV-algebras, \mathcal{V}_{τ}-system of SMMV-algebras (M, τ) s.t $M \in \mathcal{V} \in \mathcal{V}$.
- $D(M):=\left(M \times M, \tau_{M}\right)$
- $\mathrm{V}(D)=\mathrm{V}(M)_{\tau}$
- $\mathcal{S M M \mathcal { M }}=\mathrm{V}(D([0,1]))$

Varieties of SMMV-algebras

- Komori - countably many subvarieties of MV-algebras
- \mathcal{V}-variety of MV-algebras, \mathcal{V}_{τ}-system of SMMV-algebras (M, τ) s.t $M \in \mathcal{V} \in \mathcal{V}$.
- $D(M):=\left(M \times M, \tau_{M}\right)$
- $\mathrm{V}(D)=\mathrm{V}(M)_{\tau}$
- $\mathcal{S M M \mathcal { M }}=\mathrm{V}(D([0,1]))$
- $\mathcal{P}_{\tau}=\mathrm{V}(D(C))$, \mathcal{P} perfect MV-algebras, C Chang

Theorem: $\mathcal{V} \mathcal{I} \subseteq \mathcal{V} \mathcal{R} \subseteq \mathcal{V} \mathcal{L} \subseteq \mathcal{V}_{\tau}$. and all inclusions are proper of \mathcal{V} is not finitely generated.

Theorem: $\mathcal{V} \mathcal{I} \subseteq \mathcal{V} \mathcal{R} \subseteq \mathcal{V} \mathcal{L} \subseteq \mathcal{V}_{\tau}$. and all inclusions are proper of \mathcal{V} is not finitely generated.

- Theorem: Representable SMMV-algebras:

$$
\tau(x) \vee(x \rightarrow(\tau(y) \leftrightarrow y))=1 .
$$

- Theorem: $\mathcal{V I} \subseteq \mathcal{V} \mathcal{R} \subseteq \mathcal{V} \mathcal{L} \subseteq \mathcal{V}_{\tau}$. and all inclusions are proper of \mathcal{V} is not finitely generated.
- Theorem: Representable SMMV-algebras:

$$
\tau(x) \vee(x \rightarrow(\tau(y) \leftrightarrow y))=1 .
$$

- also for BL-algebra
- Theorem: $\mathcal{V I} \subseteq \mathcal{V} \mathcal{R} \subseteq \mathcal{V} \mathcal{L} \subseteq \mathcal{V}_{\tau}$. and all inclusions are proper of \mathcal{V} is not finitely generated.
- Theorem: Representable SMMV-algebras:

$$
\tau(x) \vee(x \rightarrow(\tau(y) \leftrightarrow y))=1 .
$$

- also for BL-algebra
- Theorem: $\mathcal{V} \mathcal{L}$ - generated by those $(M, \tau), M$ is local
- Theorem: $\mathcal{V I} \subseteq \mathcal{V} \mathcal{R} \subseteq \mathcal{V} \mathcal{L} \subseteq \mathcal{V}_{\tau}$. and all inclusions are proper of \mathcal{V} is not finitely generated.
- Theorem: Representable SMMV-algebras:

$$
\tau(x) \vee(x \rightarrow(\tau(y) \leftrightarrow y))=1 .
$$

- also for BL-algebra
- Theorem: $\mathcal{V} \mathcal{L}$ - generated by those $(M, \tau), M$ is local

$$
(\tau(x) \leftrightarrow x)^{*} \leq(\tau(x) \cdot \leftrightarrow x) .
$$

Uncountable many subvarieties

- $[0,1]^{*}$ ultrapower, fox positive infinitesimal $\epsilon \in[0,1]^{*}$

Uncountable many subvarieties

- $[0,1]^{*}$ ultrapower, fox positive infinitesimal $\epsilon \in[0,1]^{*}$
- X subset of prime numbers, $A(X)$ MV-algebra generated by ϵ and $\frac{n}{m}$ s.t

Uncountable many subvarieties

- $[0,1]^{*}$ ultrapower, fox positive infinitesimal $\epsilon \in[0,1]^{*}$
- X subset of prime numbers, $A(X)$

MV-algebra generated by ϵ and $\frac{n}{m}$ s.t

- (1) either $n=0$ or g.c.d $(n, m)=1$

Uncountable many subvarieties

- $[0,1]^{*}$ ultrapower, fox positive infinitesimal $\epsilon \in[0,1]^{*}$
- X subset of prime numbers, $A(X)$

MV-algebra generated by ϵ and $\frac{n}{m}$ s.t

- (1) either $n=0$ or g.c.d $(n, m)=1$
- $\forall p \in X, p$ does not divide m

Uncountable many subvarieties

- $[0,1]^{*}$ ultrapower, fox positive infinitesimal $\epsilon \in[0,1]^{*}$
- X subset of prime numbers, $A(X)$

MV-algebra generated by ϵ and $\frac{n}{m}$ s.t

- (1) either $n=0$ or g.c.d $(n, m)=1$
- $\forall p \in X, p$ does not divide m
- $\tau(x)=$ standard part of x

Uncountable many subvarieties

- $[0,1]^{*}$ ultrapower, fox positive infinitesimal $\epsilon \in[0,1]^{*}$
- X subset of prime numbers, $A(X)$

MV-algebra generated by ϵ and $\frac{n}{m}$ s.t

- (1) either $n=0$ or g.c.d $(n, m)=1$
- $\forall p \in X, p$ does not divide m
- $\tau(x)=$ standard part of x
- $(A(X), \tau)$ is linearly ordered SMMV-algebra
- if $X \neq Y$, then $\mathrm{V}(A(X)) \neq \mathrm{V}(A(Y))$
- if $X \neq Y$, then $\mathrm{V}(A(X)) \neq \mathrm{V}(A(Y))$
- Theorem: Between $\mathcal{M V I}$ and $\mathcal{M V R}$ there is uncountably many varieties

Generators of SMBL-algebras

- t-norm- function $t:[0,1] \times[0,1] \rightarrow[0,1]$ such that (i) t is commutative, associative, (ii)
$t(x, 1)=x, x \in[0,1]$, and (iii) t is
nondecreasing in both components.
Moreover, the variety of all BL-algebras is generated by all \mathbb{I}_{t} with a continuous t-norm t.

Generators of SMBL-algebras

- t-norm- function $t:[0,1] \times[0,1] \rightarrow[0,1]$ such that (i) t is commutative, associative, (ii)
$t(x, 1)=x, x \in[0,1]$, and (iii) t is
nondecreasing in both components.
Moreover, the variety of all BL-algebras is generated by all \mathbb{I}_{t} with a continuous t-norm t.
- If t is continuous, we define $x \odot_{t} y=t(x, y)$ and $x \rightarrow_{t} y=\sup \{z \in[0,1]: t(z, x) \leq y\}$ for $x, y \in[0,1]$, then
$\mathbb{I}_{t}:=\left([0,1], \min , \max , \odot_{t}, \rightarrow_{t}, 0,1\right)$ is a BL-algebra.

Generators of SMBL-algebras

- t-norm- function $t:[0,1] \times[0,1] \rightarrow[0,1]$ such that (i) t is commutative, associative, (ii)
$t(x, 1)=x, x \in[0,1]$, and (iii) t is
nondecreasing in both components.
Moreover, the variety of all BL-algebras is generated by all \mathbb{I}_{t} with a continuous t-norm t.
- If t is continuous, we define $x \odot_{t} y=t(x, y)$ and $x \rightarrow_{t} y=\sup \{z \in[0,1]: t(z, x) \leq y\}$ for $x, y \in[0,1]$, then
$\mathbb{I}_{t}:=\left([0,1], \min , \max , \odot_{t}, \rightarrow_{t}, 0,1\right)$ is a BL-algebra.
- Moreover, the variety of all BL-algiebras is
- \mathcal{T} denotes the system of all BL-algebras \mathbb{I}_{t}, where t is a continuous t-norm on the interval $[0,1]$,
- \mathcal{T} denotes the system of all BL-algebras \mathbb{I}_{t}, where t is a continuous t -norm on the interval $[0,1]$,
- Theorem 0.15 The variety of all state-morphism BL-algebras is generated by the class \mathcal{T}.

General Approach - State-Morphism Alge

- A an algebra of type F, τ an idempotent endomorphism of $A,(A, \tau)$ state-morphism algebra

General Approach - State-Morphism Alge

- A an algebra of type F, τ an idempotent endomorphism of $A,(A, \tau)$ state-morphism algebra
- $\theta_{\tau}=\{(x, y) \in A \times A: \tau(x)=\tau(y)\}$,

General Approach - State-Morphism Alge

- A an algebra of type F, τ an idempotent endomorphism of $A,(A, \tau)$ state-morphism algebra
- $\theta_{\tau}=\{(x, y) \in A \times A: \tau(x)=\tau(y)\}$,
- $\phi \subseteq A^{2}, \Phi(\phi), \Phi_{\tau}(\phi)$ congruence generated by ϕ on A and (A, τ)

General Approach - State-Morphism Alge

- A an algebra of type F, τ an idempotent endomorphism of $A,(A, \tau)$ state-morphism algebra
- $\theta_{\tau}=\{(x, y) \in A \times A: \tau(x)=\tau(y)\}$,
- $\phi \subseteq A^{2}, \Phi(\phi), \Phi_{\tau}(\phi)$ congruence generated by ϕ on A and (A, τ)
- Lemma: For any $\phi \in \operatorname{Con} \tau(\mathbf{A})$, we have $\theta_{\phi} \in \operatorname{Con}(\mathbf{A}, \tau)$, and $\theta_{\phi} \cap \tau(A)^{2}=\phi$. In addition, $\theta_{\tau} \in \operatorname{Con}(\mathbf{A}, \tau), \phi \subseteq \theta_{\phi}$, and $\Theta_{\tau}(\phi) \subseteq \theta_{\phi}$.
- Lemma: Let $\theta \in$ Con \mathbf{A} be such that $\theta \subseteq \theta_{\tau}$. Then $\theta \in \operatorname{Con}(\mathbf{A}, \tau)$ holds.
- Lemma: Let $\theta \in$ Con \mathbf{A} be such that $\theta \subseteq \theta_{\tau}$. Then $\theta \in \operatorname{Con}(\mathbf{A}, \tau)$ holds.
- Lemma: If $x, y \in \tau(\mathbf{A})$, then $\Theta(x, y)=\Theta_{\tau}(x, y)$. Consequently, $\Theta(\phi)=\Theta_{\tau}(\phi)$ whenever $\phi \subseteq \tau(A)^{2}$.
- Lemma: Let $\theta \in$ Con \mathbf{A} be such that $\theta \subseteq \theta_{\tau}$. Then $\theta \in \operatorname{Con}(\mathbf{A}, \tau)$ holds.
- Lemma: If $x, y \in \tau(\mathbf{A})$, then $\Theta(x, y)=\Theta_{\tau}(x, y)$. Consequently, $\Theta(\phi)=\Theta_{\tau}(\phi)$ whenever $\phi \subseteq \tau(A)^{2}$.
- if $(\mathrm{C}, \tau \hookrightarrow)\left(\mathrm{B} \times \mathrm{B}, \tau_{B}\right),(\mathrm{C}, \tau)$ is said to be a subdiagonal state-morphism algebra
- Theorem 0.16 Let (\mathbf{A}, τ) be a subdirectly irreducible state-morphism algebra such that A is subdirectly reducible. Then there is a subdirectly irreducible algebra B such that (\mathbf{A}, τ) is \mathbf{B}-subdiagonal.
- Theorem 0.18 Let (\mathbf{A}, τ) be a subdirectly irreducible state-morphism algebra such that A is subdirectly reducible. Then there is a subdirectly irreducible algebra B such that (\mathbf{A}, τ) is B -subdiagonal.
- Theorem 0.19 For every subdirectly irreducible state-morphism algebra (A, τ), there is a subdirectly irreducible algebra B such that (\mathbf{A}, τ) is B -subdiagonal.
- Theorem 0.20 Let (A, $\tau)$ be a subdirectly irreducible state-morphism algebra such that A is subdirectly reducible. Then there is a subdirectly irreducible algebra B such that (\mathbf{A}, τ) is \mathbf{B}-subdiagonal.
- Theorem 0.21 For every subdirectly irreducible state-morphism algebra (A, τ), there is a subdirectly irreducible algebra B such that (\mathbf{A}, τ) is \mathbf{B}-subdiagonal.
- \mathcal{K} of algebras of the same type, $\mathrm{I}(\mathcal{K}), \mathrm{H}(\mathcal{K})$, $S(\mathcal{K})$ and $P(\mathcal{K}) D(\mathcal{K})$

Theorem 0.22 (1) For every class \mathcal{K} of algebras of the same type F,
$\mathrm{V}(\mathrm{D}(\mathcal{K}))=\mathrm{V}(\mathcal{K})_{\tau}$.
(2) Let \mathcal{K}_{1} and \mathcal{K}_{2} be two classes of same type algebras. Then $\mathrm{V}\left(D\left(\mathcal{K}_{1}\right)\right)=\mathrm{V}\left(D\left(\mathcal{K}_{2}\right)\right)$ if and only if $\mathrm{V}\left(\mathcal{K}_{1}\right)=\mathrm{V}\left(\mathcal{K}_{2}\right)$.

- Theorem 0.24 (1) For every class \mathcal{K} of algebras of the same type F,
$\mathrm{V}(\mathrm{D}(\mathcal{K}))=\mathrm{V}(\mathcal{K})_{\tau}$.
(2) Let \mathcal{K}_{1} and \mathcal{K}_{2} be two classes of same type algebras. Then $\mathrm{V}\left(D\left(\mathcal{K}_{1}\right)\right)=\mathrm{V}\left(D\left(\mathcal{K}_{2}\right)\right)$ if and only if $\mathrm{V}\left(\mathcal{K}_{1}\right)=\mathrm{V}\left(\mathcal{K}_{2}\right)$.
- Theorem 0.25 If a system \mathcal{K} of algebras of the same type F generates the whole variety $\mathcal{V}(F)$ of all algebras of type F, then the variety $\mathcal{V}(F)_{\tau}$ of all state-morphism algebras (\mathbf{A}, τ), where $\mathrm{A} \in \mathcal{V}(F)$, is generated by the class $\{D(\mathbf{A}): \mathbf{A} \in \mathcal{K}\}$.

Theorem 0.26 If A is a subdirectly irreducible algebra, then any state-morphism algebra (\mathbf{A}, τ) is subdirectly irreducible.

- Theorem 0.28 If A is a subdirectly irreducible algebra, then any state-morphism algebra (\mathbf{A}, τ) is subdirectly irreducible.
- Theorem 0.29 A variety \mathcal{V}_{τ} satisfy the CEP if and only if \mathcal{V} satisfies the CEP.

Applications

The variety of all state-morphism MV-algebras is generated by the diagonal state-morphism MV-algebra $D\left([0,1]_{M V}\right)$.

Applications

- The variety of all state-morphism MV-algebras is generated by the diagonal state-morphism MV-algebra $D\left([0,1]_{M V}\right)$.
- The variety of all state-morphism BL-algebras is generated by the class $\left\{D\left(\mathbb{I}_{t}\right): \mathbb{I}_{t} \in \mathcal{T}\right\}$.

Applications

- The variety of all state-morphism MV-algebras is generated by the diagonal state-morphism MV-algebra $D\left([0,1]_{M V}\right)$.
- The variety of all state-morphism BL-algebras is generated by the class $\left\{D\left(\mathbb{I}_{t}\right): \mathbb{I}_{t} \in \mathcal{T}\right\}$.
- The variety of all state-morphism MTL-algebras is generated by the class $\left\{D\left(\mathbb{I}_{t}\right): \mathbb{I}_{t} \in \mathcal{T}_{l c}\right\}$.

Applications

- The variety of all state-morphism MV-algebras is generated by the diagonal state-morphism MV-algebra $D\left([0,1]_{M V}\right)$.
- The variety of all state-morphism BL-algebras is generated by the class $\left\{D\left(\mathbb{I}_{t}\right): \mathbb{I}_{t} \in \mathcal{T}\right\}$.
- The variety of all state-morphism MTL-algebras is generated by the class $\left\{D\left(\mathbb{I}_{t}\right): \mathbb{I}_{t} \in \mathcal{T}_{l c}\right\}$.
- The variety of all state-morphism naBL-algebras is generated by the class $\left\{D\left(\mathbb{I}_{t}^{n a}\right): \mathbb{I}_{t} \in n a \mathcal{T}\right\}$.
- If a unital ℓ-group (G, u) is double transitive, then $D(\Gamma(G, u))$ generates the variety of state-morphism pseudo MV-algebras.

References

- A. Di Nola, A. Dvurečenskij, State-morphism MV-algebras, Ann. Pure Appl. Logic 161 (2009), 161-173.

References

- A. Di Nola, A. Dvurečenskij, State-morphism MV-algebras, Ann. Pure Appl. Logic 161 (2009), 161-173.
- A. Di Nola, A. Dvurečenskij, A. Lettieri, Erratum "State-morphism MV-algebras" [Ann. Pure Appl. Logic 161 (2009) 161-173], Ann. Pure Appl. Logic 161 (2010), 1605-1607.

References

- A. Di Nola, A. Dvurečenskij, State-morphism MV-algebras, Ann. Pure Appl. Logic 161 (2009), 161-173.
- A. Di Nola, A. Dvurečenskij, A. Lettieri, Erratum "State-morphism MV-algebras" [Ann. Pure Appl. Logic 161 (2009) 161-173], Ann. Pure Appl. Logic 161 (2010), 1605-1607.
- A. Dvurečenskij, Subdirectly irreducible state-morphism BL-algebras, Archive Math. Logic 50 (2011), 145-160.
- A. Dvurečenskij, T. Kowalski, F. Montagna, State morphism MV-algebras, Inter. J. Approx. Reasoning http://arxiv.org/abs/1102.1088
- A. Dvurečenskij, T. Kowalski, F. Montagna, State morphism MV-algebras, Inter. J. Approx. Reasoning http://arxiv.org/abs/1102.1088
- M. Botur, A. Dvurečenskij, T. Kowalski, On normal-valued basic pseudo hoops,
- A. Dvurečenskij, T. Kowalski, F. Montagna, State morphism MV-algebras, Inter. J. Approx. Reasoning http://arxiv.org/abs/1102.1088
- M. Botur, A. Dvurečenskij, T. Kowalski, On normal-valued basic pseudo hoops,
- A. Di Nola, A. Dvurečenskij, A. Lettieri, On varieties of $M V$-algebras with internal states, Inter. J. Approx. Reasoning 51 (2010), 680-694.
- A. Dvurečenskij, T. Kowalski, F. Montagna, State morphism MV-algebras, Inter. J. Approx. Reasoning http://arxiv.org/abs/1102.1088
- M. Botur, A. Dvurečenskij, T. Kowalski, On normal-valued basic pseudo hoops,
- A. Di Nola, A. Dvurečenskij, A. Lettieri, On varieties of $M V$-algebras with internal states, Inter. J. Approx. Reasoning 51 (2010), 680-694.
- L.C. Ciungu, A. Dvurečenskij, M. Hyčko, State BL-algebras, Soft Computing
- M. Botur, A. Dvurečenskij, State-morphism algebras - general approach, http://arxiv.org/submit/230594

Thank you for your attention

