A General Approach to State-Morphism MV-Algebras

Anatolij DVUREČENSKIJ

Mathematical Institute, Slovak Academy of Sciences,

Štefánikova 49, SK-814 73 Bratislava, Slovakia

E-mail: dvurecen@mat.savba.sk

The talk given at the Algebraic Semantics for Uncertainty and Vagueness May 18–21,

2011, Palazzo Genovese, Salerno - Italy

supported by Slovak-Italian project SK-IT 0016-08.

new physics, beginning 20th century

- new physics, beginning 20th century
- Newton mechanics fails in the micro world

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$\sigma_s(x)\sigma_s(y) \ge \hbar > 0.$$

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$\sigma_s(x)\sigma_s(y) \ge \hbar > 0.$$

x-momentum, y position of elementary particle, s state -probability measure

- new physics, beginning 20th century
- Newton mechanics fails in the micro world
- Heisenberg Uncertainty Principle

$$\sigma_s(x)\sigma_s(y) \ge \hbar > 0.$$

x-momentum, y position of elementary particle, s state -probability measure

for classical mechanics

$$\inf_{s}(\sigma_s(x)\sigma_s(y)) = 0.$$

Hilbert, 1900, 6th Problem:

- Hilbert, 1900, 6th Problem:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.

- Hilbert, 1900, 6th Problem:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Kolmogorov, probability theory, 1933,

- Hilbert, 1900, 6th Problem:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Kolmogorov, probability theory, 1933,
- G. Birkhoff and J. von Neumann, 1936 quantum logic

- Hilbert, 1900, 6th Problem:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Kolmogorov, probability theory, 1933,
- G. Birkhoff and J. von Neumann, 1936 quantum logic
- C.C. Chang, 1958 MV-algebras

- Hilbert, 1900, 6th Problem:
- To find a few physical axioms that, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible.
- Kolmogorov, probability theory, 1933,
- G. Birkhoff and J. von Neumann, 1936 quantum logic
- C.C. Chang, 1958 MV-algebras
- J. Łukasiewicz, 1922 many-valued logic

psychiatry

- psychiatry
- compound systems of computers

- psychiatry
- compound systems of computers
- quantum chemistry

- psychiatry
- compound systems of computers
- quantum chemistry
- quantum computing

- psychiatry
- compound systems of computers
- quantum chemistry
- quantum computing
- Bell inequalities

$$p(a) + p(b) - p(a \land b) \le 1,$$

- psychiatry
- compound systems of computers
- quantum chemistry
- quantum computing
- Bell inequalities

$$p(a) + p(b) - p(a \land b) \le 1,$$

 $(=p(a \lor b))$ test for a classical system

Boolean algebras

- Boolean algebras
- Orthomodular lattices

- Boolean algebras
- Orthomodular lattices
- Hilbert space H, $\mathcal{L}(H)$ the system of all closed subspaces of H

- Boolean algebras
- Orthomodular lattices
- Hilbert space H, $\mathcal{L}(H)$ the system of all closed subspaces of H
- Orthomodular posets

- Boolean algebras
- Orthomodular lattices
- Hilbert space H, $\mathcal{L}(H)$ the system of all closed subspaces of H
- Orthomodular posets
- D-posets -Kôpka and Chovanec 1992

- Boolean algebras
- Orthomodular lattices
- Hilbert space H, $\mathcal{L}(H)$ the system of all closed subspaces of H
- Orthomodular posets
- D-posets -Kôpka and Chovanec 1992
- effect algebras

- Boolean algebras
- Orthomodular lattices
- Hilbert space H, $\mathcal{L}(H)$ the system of all closed subspaces of H
- Orthomodular posets
- D-posets -Kôpka and Chovanec 1992
- effect algebras
- MV-algebras compatibility

G. Boole: if M-alg. str. C = A + B, and P is a probability, then P(A + B) = P(A) + P(B);

- G. Boole: if M-alg. str. C = A + B, and P is a probability, then P(A + B) = P(A) + P(B);
- the operation + is a partial one on M

- G. Boole: if M-alg. str. C = A + B, and P is a probability, then P(A + B) = P(A) + P(B);
- the operation + is a partial one on M
- M is a BA, $A+B:=A\cup B$ whenever $A\cap B=\emptyset \Leftrightarrow A< B'$

- G. Boole: if M-alg. str. C = A + B, and P is a probability, then P(A + B) = P(A) + P(B);
- the operation + is a partial one on M
- M is a BA, $A+B:=A\cup B$ whenever $A\cap B=\emptyset \Leftrightarrow A< B'$
- ${f A}$ and ${\cal B}$ mutually excluding summable orthogonal

- G. Boole: if M-alg. str. C = A + B, and P is a probability, then P(A + B) = P(A) + P(B);
- the operation + is a partial one on M
- M is a BA, $A+B:=A\cup B$ whenever $A\cap B=\emptyset\Leftrightarrow A\leq B'$
- A and B mutually excluding summable orthogonal
- state or FAS on an algebraic structure $(M;+,',0,1),\,s:\,M\to[0,1] \text{ (i) } s(1)=1,\text{ (ii)}$ $s(a+b)=s(a)+s(b) \text{ if } a+b\in M$

States on $\mathcal{L}(H)$

 $\mathcal{L}(H), \mathcal{E}(H) = \{A \in \mathcal{B}(H) : O \le A \le I\}$

States on $\mathcal{L}(H)$

- $\mathcal{L}(H), \mathcal{E}(H) = \{ A \in \mathcal{B}(H) : O \le A \le I \}$
- $s_{\phi}(M) = (P_M \phi, \phi), M \in \mathcal{L}(H), \ \phi \in H, \|\phi\| = 1$

$$s(M) = \sum_{i} \lambda_{i} s_{\phi_{i}}(M) = \operatorname{tr}(TP_{M}), \ M \in \mathcal{L}(H).$$

Gleason theorem, 1957, $3 \leq \dim H \leq \aleph_0$,

States on $\mathcal{L}(H)$

- $\mathcal{L}(H), \mathcal{E}(H) = \{ A \in \mathcal{B}(H) : O \le A \le I \}$
- $s_{\phi}(M) = (P_M \phi, \phi), M \in \mathcal{L}(H), \ \phi \in H, \|\phi\| = 1$

$$s(M) = \sum_{i} \lambda_{i} s_{\phi_{i}}(M) = \operatorname{tr}(TP_{M}), \ M \in \mathcal{L}(H).$$

Gleason theorem, 1957, $3 \leq \dim H \leq \aleph_0$,

• If s is a FAS $\mathcal{L}(H)$, Aarnes

$$s = \lambda s_1 + (1 - \lambda)s_2$$

 s_1 is a σ -additive, s_2 a FAS vanishing on each finite-dimensional subspace of H.

Applications of Gleason's Theorem

 $s(M) = \operatorname{tr}(TP_M), M \in \mathcal{L}(H)$

Applications of Gleason's Theorem

- $s(M) = \operatorname{tr}(TP_M), M \in \mathcal{L}(H)$
- $\operatorname{dim} H = 2$ Gleason' Theorem not valid

Applications of Gleason's Theorem

- $s(M) = \operatorname{tr}(TP_M), M \in \mathcal{L}(H)$
- $\operatorname{dim} H = 2$ Gleason' Theorem not valid
- Gleason's Theorem holds for nonseparable iff $\dim H$ is a non-measurable cardinal

Applications of Gleason's Theorem

- $s(M) = \operatorname{tr}(TP_M), M \in \mathcal{L}(H)$
- $\operatorname{dim} H = 2$ Gleason' Theorem not valid
- Gleason's Theorem holds for nonseparable iff $\dim H$ is a non-measurable cardinal
- Ulam, I- non-measurable cardinal if there exists no probability measure on 2^I vanishing on each $i \in I$.

Applications of Gleason's Theorem

- $s(M) = \operatorname{tr}(TP_M), M \in \mathcal{L}(H)$
- $\overline{-\dim H} = 2$ Gleason' Theorem not valid
- Gleason's Theorem holds for nonseparable iff $\dim H$ is a non-measurable cardinal
- Ulam, I- non-measurable cardinal if there exists no probability measure on 2^I vanishing on each $i \in I$.
- von Neumann algebra V extension from FAS from $\mathcal{L}(V)$ to V.

 ${f S}$ -prehilbert - inner product space (\cdot,\cdot)

- S-prehilbert inner product space (\cdot, \cdot)
- $\mathcal{E}(S) = \{M \subseteq S : M + M^{\perp} = S\} \text{ OMP}$

- S-prehilbert inner product space (\cdot, \cdot)
- $\mathcal{E}(S) = \{M \subseteq S : M + M^{\perp} = S\} \text{ OMP}$
- $\mathcal{F}(S) = \{ M \subseteq S : M^{\perp \perp} = M \}$

- S-prehilbert inner product space (\cdot, \cdot)
- $\mathcal{E}(S) = \{M \subseteq S : M + M^{\perp} = S\} \text{ OMP}$
- $\mathcal{F}(S) = \{ M \subseteq S : M^{\perp \perp} = M \}$
- $\mathcal{E}(S) \subseteq \mathcal{F}(S)$

- S-prehilbert inner product space (\cdot, \cdot)
- $\mathcal{E}(S) = \{M \subseteq S : M + M^{\perp} = S\} \text{ OMP}$
- $\mathcal{F}(S) = \{ M \subseteq S : M^{\perp \perp} = M \}$
- $\mathcal{E}(S) \subseteq \mathcal{F}(S)$
- S complete iff $\mathcal{F}(S)$ OML

- ullet S-prehilbert inner product space (\cdot,\cdot)
- $\mathcal{E}(S) = \{M \subseteq S : M + M^{\perp} = S\} \text{ OMP}$
- $\mathcal{F}(S) = \{ M \subseteq S : M^{\perp \perp} = M \}$
- $\mathcal{E}(S) \subseteq \mathcal{F}(S)$
- S complete iff $\mathcal{F}(S)$ OML
- S complete iff $\mathcal{F}(S)$ σ -OMP

- S-prehilbert inner product space (\cdot, \cdot)
- $\mathcal{E}(S) = \{M \subseteq S : M + M^{\perp} = S\} \text{ OMP}$
- $\mathcal{F}(S) = \{ M \subseteq S : M^{\perp \perp} = M \}$
- $\mathcal{E}(S) \subseteq \mathcal{F}(S)$
- S complete iff $\mathcal{F}(S)$ OML
- S complete iff $\mathcal{F}(S)$ σ -OMP
- S complete iff $\mathcal{E}(S) = \mathcal{F}(S)$

M - MV-algebra, we define a partial operation +, via a+b is defined iff $a \le b^*$ iff $a \odot b = 0$, then $a+b := a \oplus b$.

- M MV-algebra, we define a partial operation +, via a+b is defined iff $a \le b^*$ iff $a \odot b = 0$, then $a+b := a \oplus b$.
- + restriction of the ℓ-group addition

- M MV-algebra, we define a partial operation +, via a+b is defined iff $a \le b^*$ iff $a \odot b = 0$, then $a+b := a \oplus b$.
- + restriction of the ℓ-group addition
- state- $s: M \to [0,1]$, (i) s(a+b) = s(a) + s(b), (ii) s(1) = 1.

- M MV-algebra, we define a partial operation +, via a+b is defined iff $a \le b^*$ iff $a \odot b = 0$, then $a+b := a \oplus b$.
- + restriction of the ℓ-group addition
- state- $s: M \to [0,1]$, (i) s(a+b) = s(a) + s(b), (ii) s(1) = 1.
- $\mathcal{S}(M)$ -set of states. $\mathcal{S}(M) \neq \emptyset$.

- M MV-algebra, we define a partial operation +, via a+b is defined iff $a \le b^*$ iff $a \odot b = 0$, then $a+b := a \oplus b$.
- + restriction of the ℓ-group addition
- state- $s: M \to [0,1]$, (i) s(a+b) = s(a) + s(b), (ii) s(1) = 1.
- $\mathcal{S}(M)$ -set of states. $\mathcal{S}(M) \neq \emptyset$.
- extremal state $s = \lambda s_1 + (1 \lambda)s_2$ for $\lambda \in (0, 1) \Rightarrow s = s_1 = s_2$.

 $\{s_{\alpha}\} \to s \text{ iff } \lim_{\alpha} s_{\alpha}(a) \to s(a), a \in M.$

- $\{s_{\alpha}\}$ $\rightarrow s$ iff $\lim_{\alpha} s_{\alpha}(a) \rightarrow s(a), a \in M$.
- $\mathcal{S}(E)$ Hausdorff compact topological space, $\partial_e \mathcal{S}(M)$

- $\{s_{\alpha}\} \to s \text{ iff } \lim_{\alpha} s_{\alpha}(a) \to s(a), a \in M.$
- $\mathcal{S}(E)$ Hausdorff compact topological space, $\partial_e \mathcal{S}(M)$
- Krein-Mil'man $\mathcal{S}(M) = \mathrm{Cl}(\mathrm{ConHul}(\partial_e \mathcal{S}(M)))$

- $\{s_{\alpha}\} \to s \text{ iff } \lim_{\alpha} s_{\alpha}(a) \to s(a), a \in M.$
- $\mathcal{S}(E)$ Hausdorff compact topological space, $\partial_e \mathcal{S}(M)$
- Krein-Mil'man $S(M) = \text{Cl}(\text{ConHul}(\partial_e S(M)))$
- s is extremal iff $s(a \wedge b) = \min\{s(a), s(b)\}$ iff s is MV-homomorphism iff $\mathrm{Ker}(s)$ is a maximal ideal.

- $\{s_{\alpha}\} \to s \text{ iff } \lim_{\alpha} s_{\alpha}(a) \to s(a), a \in M.$
- $\mathcal{S}(E)$ Hausdorff compact topological space, $\partial_e \mathcal{S}(M)$
- Krein-Mil'man $S(M) = \text{Cl}(\text{ConHul}(\partial_e S(M)))$
- s is extremal iff $s(a \wedge b) = \min\{s(a), s(b)\}$ iff s is MV-homomorphism iff $\mathrm{Ker}(s)$ is a maximal ideal.
- $s \leftrightarrow \operatorname{Ker}(s)$, 1-1 correspondence

every maximal ideal is a kernel of a unique state

- every maximal ideal is a kernel of a unique state
- Kernel-hull topology = $\partial_e S(E)$ set of extremal states

- every maximal ideal is a kernel of a unique state
- Kernel-hull topology = $\partial_e S(E)$ set of extremal states
- Kroupa- Panti $a \mapsto \hat{a}, \, \hat{a}(s) := s(a),$

$$s(a) = \int_{\partial_e S(M)} \hat{a}(t) d\mu_s(t)$$

- every maximal ideal is a kernel of a unique state
- Kernel-hull topology = $\partial_e S(E)$ set of extremal states
- Kroupa- Panti $a \mapsto \hat{a}, \, \hat{a}(s) := s(a),$

$$s(a) = \int_{\partial_e \mathcal{S}(M)} \hat{a}(t) d\mu_s(t)$$

 μ_s - unique Borel σ -additive probability measure on $\mathcal{B}(\mathcal{S}(M))$ such that

$$\mu_{\bullet}(\partial_{\bullet}\mathcal{S}(M)) = 1$$

State MV-algebras

MV-algebras with a state are not universal algebras, and therefore, the do not provide an algebraizable logic for probability reasoning over many-valued events

State MV-algebras

- MV-algebras with a state are not universal algebras, and therefore, the do not provide an algebraizable logic for probability reasoning over many-valued events
- Flaminio-Montagna introduce an algebraizable logic whose equivalent algebraic semantics is the variety of state MV-algebras

State MV-algebras

- MV-algebras with a state are not universal algebras, and therefore, the do not provide an algebraizable logic for probability reasoning over many-valued events
- Flaminio-Montagna introduce an algebraizable logic whose equivalent algebraic semantics is the variety of state MV-algebras
- A state MV-algebra is a pair (M, τ) , M MV-algebra, τ unary operation on A s.t.

$$au(1) = 1$$

$$\tau(1) = 1$$

$$\tau(x \oplus y) = \tau(x) \oplus \tau(t \ominus (x \odot y))$$

- au(1) = 1
- $\tau(x \oplus y) = \tau(x) \oplus \tau(t \ominus (x \odot y))$
- $\tau(x^*) = \tau(x)^*$

- au(1) = 1
- $\tau(x \oplus y) = \tau(x) \oplus \tau(t \ominus (x \odot y))$
- $\tau(x^*) = \tau(x)^*$
- $\tau(\tau(x) \oplus \tau(y)) = \tau(x) \oplus \tau(y)$

- $\tau(1) = 1$
- $\tau(x \oplus y) = \tau(x) \oplus \tau(t \ominus (x \odot y))$
- $\tau(x^*) = \tau(x)^*$
- $\tau(\tau(x) \oplus \tau(y)) = \tau(x) \oplus \tau(y)$
- au -internal operator, state operator

$$\tau^2 = \tau$$

- $\tau^2 = \tau$
- $\tau(M)$ is an MV-algebra and τ on $\tau(M)$ -identity

- $au^2 = au$
- $\tau(M)$ is an MV-algebra and τ on $\tau(M)$ -identity
- $\tau(x+y) = \tau(x) + \tau(y)$

- $| au^2 = au^{-1}$
- au au(M) is an MV-algebra and au on au(M) -identity
- $\tau(x+y) = \tau(x) + \tau(y)$
- $\tau(x\odot y)=\tau(x)\odot \tau(y) \text{ if } x\odot y=0.$

Properties

- $\tau^2 = \tau$
- $\tau(M)$ is an MV-algebra and τ on $\tau(M)$ -identity
- $\tau(x+y) = \tau(x) + \tau(y)$
- $\tau(x\odot y) = \tau(x)\odot\tau(y) \text{ if } x\odot y = 0.$
- if (M,τ) is s.i., then $\tau(M)$ is a chain

Properties

- $| \tau^2 = au'$
- $\tau(M)$ is an MV-algebra and τ on $\tau(M)$ -identity
- $\tau(x+y) = \tau(x) + \tau(y)$
- $\tau(x\odot y) = \tau(x)\odot\tau(y) \text{ if } x\odot y = 0.$
- if (M,τ) is s.i., then $\tau(M)$ is a chain
- if (M, τ) is s.i., then M is not necessarily a chain

F-filter, τ -filter if $\tau(F) \subseteq F$.

- F-filter, τ -filter if $\tau(F) \subseteq F$.
- 1-1 correspondence congruences and τ -filters

- F-filter, au-filter if $au(F)\subseteq \overline{F}$.
- 1-1 correspondence congruences and τ -filters
- $M = [0,1] \times [0,1], \ \tau(x,y) = (x,x) \text{ s.i. not chain}$

- F -filter, τ -filter if $\tau(F) \subseteq F$.
- 1-1 correspondence congruences and τ -filters
- $M = [0,1] \times [0,1], \, \tau(x,y) = (x,x) \, \text{s.i. not}$ chain
- state-morphism $(M,\tau),\,\tau$ is an idempotent endomorphism

- F -filter, τ -filter if $\tau(F) \subseteq F$.
- 1-1 correspondence congruences and τ -filters
- $M = [0,1] \times [0,1], \, \tau(x,y) = (x,x) \, \text{s.i.} \text{not}$ chain
- state-morphism $(M,\tau),\,\tau$ is an idempotent endomorphism
- au_s state on M, $[0,1]\otimes M$, $au_s(lpha\otimes a):=lpha\cdot s(a)\otimes 1$

• $([0,1]\otimes,\tau_s)$ is an SMV-algebra.

- $([0,1]\otimes, \tau_s)$ is an SMV-algebra.
- $([0,1]\otimes,\tau_s)$ is an SMMV-algebra iff s is an extremal state

- $\overline{([0,1]\otimes, au_s)}$ is an SMV-algebra.
- $([0,1]\otimes,\tau_s)$ is an SMMV-algebra iff s is an extremal state
- if M is a chain, every SMV-algebra (M,τ) is an SMMV-algebra

- $([0,1]\otimes,\tau_s)$ is an SMV-algebra.
- $([0,1]\otimes,\tau_s)$ is an SMMV-algebra iff s is an extremal state
- if M is a chain, every SMV-algebra (M,τ) is an SMMV-algebra
- if $\tau(M) \in V(S_1, \dots, S_n)$ for some $n \ge 1$, then (M, τ) is an SMMV-algebra

- $([0,1]\otimes,\tau_s)$ is an SMV-algebra.
- $([0,1]\otimes,\tau_s)$ is an SMMV-algebra iff s is an extremal state
- if M is a chain, every SMV-algebra (M,τ) is an SMMV-algebra
- if $\tau(M) \in V(S_1, \dots, S_n)$ for some $n \ge 1$, then (M, τ) is an SMMV-algebra
- Iff $\tau((n+1)x) = \tau(nx)$

State BL-algebras

 ${ullet} M$ - BL-algebra. A map au:M o M s.t.

$$(1)_{BL} \ \tau(0) = 0;$$

$$(2)_{BL} \ \tau(x \to y) = \tau(x) \to \tau(x \land y);$$

$$(3)_{BL} \ \tau(x \odot y) = \tau(x) \odot \tau(x \to (x \odot y));$$

$$(4)_{BL} \ \tau(\tau(x) \odot \tau(y)) = \tau(x) \odot \tau(y);$$

$$(5)_{BL} \ \tau(\tau(x) \to \tau(y)) = \tau(x) \to \tau(y)$$

state-operator on M, pair (M, au) - state BL-algebra

State BL-algebras

lacksquare M - BL-algebra. A map au:M o M s.t.

$$(1)_{BL} \ \tau(0) = 0;$$

$$(2)_{BL} \ \tau(x \to y) = \tau(x) \to \tau(x \land y);$$

$$(3)_{BL} \ \tau(x \odot y) = \tau(x) \odot \tau(x \to (x \odot y));$$

$$(4)_{BL} \ \tau(\tau(x) \odot \tau(y)) = \tau(x) \odot \tau(y);$$

$$(5)_{BL} \ \tau(\tau(x) \to \tau(y)) = \tau(x) \to \tau(y)$$

state-operator on M, pair (M, au) - state BL-algebra

If $\tau:M\to M$ is a BL-endomorphism s.t. $\tau\circ\tau=\tau$, - state-morphism operator and the couple (M,τ) - state-morphism BL-algebra.

every state operator on a linear BL-algebra is a state-morphism

- every state operator on a linear BL-algebra is a state-morphism
- **Example 0.2** Let M be a BL-algebra. On $M \times M$ we define two operators, τ_1 and τ_2 , as follows

$$\tau_1(a,b) = (a,a), \quad \tau_2(a,b) = (b,b), \quad (a,b) \in M \times M.$$
(2.0)

Then τ_1 and τ_2 are two state-morphism operators on $M\times M.$

- every state operator on a linear BL-algebra is a state-morphism
- **Example 0.3** Let M be a BL-algebra. On $M \times M$ we define two operators, τ_1 and τ_2 , as follows

$$\tau_1(a,b) = (a,a), \quad \tau_2(a,b) = (b,b), \quad (a,b) \in M \times M.$$
(2.0)

Then τ_1 and τ_2 are two state-morphism operators on $M\times M.$

•
$$Ker(\tau) = \{a \in M : \tau(a) = 1\}.$$

We say that two subhoops, A and B, of a BL-algebra M have the *disjunction property* if for all $x \in A$ and $y \in B$, if $x \lor y = 1$, then either x = 1 or y = 1.

- We say that two subhoops, A and B, of a BL-algebra M have the *disjunction property* if for all $x \in A$ and $y \in B$, if $x \lor y = 1$, then either x = 1 or y = 1.
- **Lemma 0.5** Suppose that (M, τ) is a state BL-algebra. Then:
 - (1) If τ is faithful, then (M,τ) is a subdirectly irreducible state BL-algebra if and only if $\tau(M)$ is a subdirectly irreducible BL-algebra.

Now let (M, τ) be subdirectly irreducible.

- (2) $Ker(\tau)$ is (either trivial or) a subdirectly irreducible hoop.
 - (3) $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property.

- (2) $Ker(\tau)$ is (either trivial or) a subdirectly irreducible hoop.
 - (3) $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property.
- **Theorem 0.7** Let (M, τ) be a state BL-algebra satisfying conditions (1), (2) and (3) in the last Lemma. Then (M, τ) is subdirectly irreducible.

Theorem 0.8 A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.

- **Theorem 0.9** A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.
- (i) M is linear, $\tau = \mathrm{id}_M$, and the BL-reduct M is a subdirectly irreducible BL-algebra.

- **Theorem 0.10** A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.
- (i) M is linear, $\tau = id_M$, and the BL-reduct M is a subdirectly irreducible BL-algebra.
- (ii) The state-morphism operator τ is not faithful, M has no nontrivial Boolean elements, and the BL-reduct M of (M,τ) is a local BL-algebra, $\operatorname{Ker}(\tau)$ is a subdirectly irreducible irreducible hoop, and $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property

- **Theorem 0.11** A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.
- (i) M is linear, $\tau = id_M$, and the BL-reduct M is a subdirectly irreducible BL-algebra.
- (ii) The state-morphism operator τ is not faithful, M has no nontrivial Boolean elements, and the BL-reduct M of (M,τ) is a local BL-algebra, $\operatorname{Ker}(\tau)$ is a subdirectly irreducible irreducible hoop, and $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property

- **Theorem 0.12** A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.
- (i) M is linear, $\tau = id_M$, and the BL-reduct M is a subdirectly irreducible BL-algebra.
- (ii) The state-morphism operator τ is not faithful, M has no nontrivial Boolean elements, and the BL-reduct M of (M,τ) is a local BL-algebra, $\operatorname{Ker}(\tau)$ is a subdirectly irreducible irreducible hoop, and $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property

- **Theorem 0.13** A state-morphism BL-algebra (M, τ) is subdirectly irreducible irreducible if and only if one of the following three possibilities holds.
- (i) M is linear, $\tau = id_M$, and the BL-reduct M is a subdirectly irreducible BL-algebra.
- (ii) The state-morphism operator τ is not faithful, M has no nontrivial Boolean elements, and the BL-reduct M of (M,τ) is a local BL-algebra, $\operatorname{Ker}(\tau)$ is a subdirectly irreducible irreducible hoop, and $\operatorname{Ker}(\tau)$ and $\tau(M)$ have the disjunction property

Moreover, M is linearly ordered if and only if $\operatorname{Rad}_1(M)$ is linearly ordered, and in such a case, M is a subdirectly irreducible BL-algebra such that if F is the smallest nontrivial state-filter for (M, τ) , then F is the smallest nontrivial BL-filter for M.

- Moreover, M is linearly ordered if and only if $\operatorname{Rad}_1(M)$ is linearly ordered, and in such a case, M is a subdirectly irreducible BL-algebra such that if F is the smallest nontrivial state-filter for (M, τ) , then F is the smallest nontrivial BL-filter for M.
- If $Rad(M) = Ker(\tau)$, then M is linearly ordered.

(iii) The state-morphism operator τ is not faithful, M has a nontrivial Boolean element. There are a linearly ordered BL-algebra A, a subdirectly irreducible BL-algebra B, and an injective BL-homomorphism $h: A \rightarrow B$ such that (M, τ) is isomorphic as a state-morphism BL-algebra with the state-morphism BL-algebra $(A \times B, \tau_h)$, where $\tau_h(x,y) = (x,h(x))$ for any $(x,y) \in A \times B$.

 Komori - countably many subvarieties of MV-algebras

- Komori countably many subvarieties of MV-algebras
- ${\mathcal V}$ -variety of MV-algebras, ${\mathcal V}_{\tau}$ -system of SMMV-algebras (M,τ) s.t $M\in {\mathcal V}\in {\mathcal V}.$

- Komori countably many subvarieties of MV-algebras
- ${\mathcal V}$ -variety of MV-algebras, ${\mathcal V}_{\tau}$ -system of SMMV-algebras (M,τ) s.t $M\in {\mathcal V}\in {\mathcal V}$.
- $D(M) := (M \times M, \tau_M)$

- Komori countably many subvarieties of MV-algebras
- ${\mathcal V}$ -variety of MV-algebras, ${\mathcal V}_{\tau}$ -system of SMMV-algebras (M,τ) s.t $M\in {\mathcal V}\in {\mathcal V}$.
- $D(M) := (M \times M, \tau_M)$
- $\mathsf{V}(D) = \mathsf{V}(M)_{\tau}$

- Komori countably many subvarieties of MV-algebras
- ${\mathcal V}$ -variety of MV-algebras, ${\mathcal V}_{\tau}$ -system of SMMV-algebras (M,τ) s.t $M\in {\mathcal V}\in {\mathcal V}$.
- $D(M) := (M \times M, \tau_M)$
- $V(D) = V(M)_{\tau}$
- $\mathcal{SMMV} = V(D([0,1]))$

- Komori countably many subvarieties of MV-algebras
- ${\mathcal V}$ -variety of MV-algebras, ${\mathcal V}_{\tau}$ -system of SMMV-algebras (M,τ) s.t $M\in {\mathcal V}\in {\mathcal V}$.
- $D(M) := (M \times M, \tau_M)$
- $\mathsf{V}(D) = \mathsf{V}(M)_{\tau}$
- $\mathcal{SMMV} = V(D([0,1]))$
- $\mathcal{P}_{\tau} = V(D(C)), \mathcal{P}$ perfect MV-algebras, C-Chang

Theorem: $\mathcal{VI} \subseteq \mathcal{VR} \subseteq \mathcal{VL} \subseteq \mathcal{V}_{\tau}$. and all inclusions are proper of \mathcal{V} is not finitely generated.

- Theorem: $\mathcal{VI} \subseteq \mathcal{VR} \subseteq \mathcal{VL} \subseteq \mathcal{V}_{\tau}$. and all inclusions are proper of \mathcal{V} is not finitely generated.
- Theorem: Representable SMMV-algebras:

$$\tau(x) \lor (x \to (\tau(y) \leftrightarrow y)) = 1.$$

- Theorem: $\mathcal{VI} \subseteq \mathcal{VR} \subseteq \mathcal{VL} \subseteq \mathcal{V}_{\tau}$. and all inclusions are proper of \mathcal{V} is not finitely generated.
- Theorem: Representable SMMV-algebras:

$$\tau(x) \lor (x \to (\tau(y) \leftrightarrow y)) = 1.$$

also for BL-algebra

- Theorem: $\mathcal{VI} \subseteq \mathcal{VR} \subseteq \mathcal{VL} \subseteq \mathcal{V}_{\tau}$. and all inclusions are proper of \mathcal{V} is not finitely generated.
- Theorem: Representable SMMV-algebras:

$$\tau(x) \lor (x \to (\tau(y) \leftrightarrow y)) = 1.$$

- also for BL-algebra
- Theorem: \mathcal{VL} generated by those $(M,\tau),\,M$ is local

- Theorem: $\mathcal{VI} \subseteq \mathcal{VR} \subseteq \mathcal{VL} \subseteq \mathcal{V}_{\tau}$. and all inclusions are proper of \mathcal{V} is not finitely generated.
- Theorem: Representable SMMV-algebras:

$$\tau(x) \lor (x \to (\tau(y) \leftrightarrow y)) = 1.$$

- also for BL-algebra
- Theorem: \mathcal{VL} generated by those $(M,\tau),\,M$ is local

$$(\tau(x) \leftrightarrow x)^* \leq (\tau(x) \leftrightarrow x).$$

[0,1]* ultrapower, fox positive infinitesimal $\epsilon \in [0,1]^*$

- $[0,1]^*$ ultrapower, fox positive infinitesimal $\epsilon \in [0,1]^*$
- X subset of prime numbers, A(X) MV-algebra generated by ϵ and $\frac{n}{m}$ s.t

- $[0,1]^*$ ultrapower, fox positive infinitesimal $\epsilon \in [0,1]^*$
- X subset of prime numbers, A(X) MV-algebra generated by ϵ and $\frac{n}{m}$ s.t
- (1) either n = 0 or g.c.d(n, m) = 1

- $[0,1]^*$ ultrapower, fox positive infinitesimal $\epsilon \in [0,1]^*$
- X subset of prime numbers, A(X) MV-algebra generated by ϵ and $\frac{n}{m}$ s.t
- (1) either n = 0 or g.c.d(n, m) = 1
- $\forall p \in X$, p does not divide m

- $[0,1]^*$ ultrapower, fox positive infinitesimal $\epsilon \in [0,1]^*$
- ullet X subset of prime numbers, A(X) MV-algebra generated by ϵ and $\frac{n}{m}$ s.t
- (1) either n = 0 or g.c.d(n, m) = 1
- $\forall p \in X$, p does not divide m
- $\tau(x)$ = standard part of x

- [0,1]* ultrapower, fox positive infinitesimal $\epsilon \in [0,1]^*$
- X subset of prime numbers, A(X) MV-algebra generated by ϵ and $\frac{n}{m}$ s.t
- (1) either n = 0 or g.c.d(n, m) = 1
- $\forall p \in X$, p does not divide m
- $\tau(x)$ = standard part of x
- $(A(X), \tau)$ is linearly ordered SMMV-algebra

• if $X \neq Y$, then $V(A(X)) \neq V(A(Y))$

- if $X \neq Y$, then $V(A(X)) \neq V(A(Y))$
- Theorem: Between \mathcal{MVI} and \mathcal{MVR} there is uncountably many varieties

Generators of SMBL-algebras

that (i) t is commutative, associative, (ii) $t(x,1)=x, x\in[0,1]$, and (iii) t is nondecreasing in both components. Moreover, the variety of all BL-algebras is generated by all \mathbb{I}_t with a continuous t-norm t.

Generators of SMBL-algebras

- that (i) t is commutative, associative, (ii) $t(x,1) = x, x \in [0,1],$ and (iii) t is nondecreasing in both components. Moreover, the variety of all BL-algebras is generated by all \mathbb{I}_t with a continuous t-norm t.
- If t is continuous, we define $x\odot_t y=t(x,y)$ and $x\to_t y=\sup\{z\in[0,1]:t(z,x)\leq y\}$ for $x,y\in[0,1]$, then $\mathbb{I}_t:=([0,1],\min,\max,\odot_t,\to_t,0,1) \text{ is a}$ BL-algebra.

Generators of SMBL-algebras

- that (i) t is commutative, associative, (ii) $t(x,1) = x, x \in [0,1], \text{ and (iii) } t$ is nondecreasing in both components. Moreover, the variety of all BL-algebras is generated by all \mathbb{I}_t with a continuous t-norm t.
- If t is continuous, we define $x \odot_t y = t(x,y)$ and $x \to_t y = \sup\{z \in [0,1] : t(z,x) \leq y\}$ for $x,y \in [0,1]$, then $\mathbb{I}_t := ([0,1], \min, \max, \odot_t, \to_t, 0, 1)$ is a BL-algebra.
- Moreover, the variety of all BL-algebras is Moreover, and Moreover, and

T denotes the system of all BL-algebras \mathbb{I}_t , where t is a continuous t-norm on the interval [0,1],

- T denotes the system of all BL-algebras \mathbb{I}_t , where t is a continuous t-norm on the interval [0,1],
- **Theorem 0.15** The variety of all state-morphism BL-algebras is generated by the class \mathcal{T} .

A an algebra of type F, τ an idempotent endomorphism of A, (A,τ) state-morphism algebra

- A an algebra of type F, τ an idempotent endomorphism of A, (A,τ) state-morphism algebra
- $\theta_{\tau} = \{(x,y) \in A \times A : \tau(x) = \tau(y)\},$

- A an algebra of type F, τ an idempotent endomorphism of A, (A,τ) state-morphism algebra
- $\theta_{\tau} = \{(x,y) \in A \times A : \tau(x) = \tau(y)\},$
- $\phi \subseteq A^2, \Phi(\phi), \Phi_{\tau}(\phi)$ congruence generated by ϕ on A and (A, τ)

- A an algebra of type F, τ an idempotent endomorphism of A, (A,τ) state-morphism algebra
- $\theta_{\tau} = \{(x, y) \in A \times A : \tau(x) = \tau(y)\},$
- $\phi \subseteq A^2, \Phi(\phi), \Phi_{\tau}(\phi)$ congruence generated by ϕ on A and (A, τ)
- Lemma: For any $\phi \in \operatorname{Con} \tau(\mathbf{A})$, we have $\theta_{\phi} \in \operatorname{Con} (\mathbf{A}, \tau)$, and $\theta_{\phi} \cap \tau(A)^2 = \phi$. In addition, $\theta_{\tau} \in \operatorname{Con} (\mathbf{A}, \tau)$, $\phi \subseteq \theta_{\phi}$, and $\Theta_{\tau}(\phi) \subseteq \theta_{\phi}$.

Lemma: Let $\theta \in \operatorname{Con} \mathbf{A}$ be such that $\theta \subseteq \theta_{\tau}$. Then $\theta \in \operatorname{Con} (\mathbf{A}, \tau)$ holds.

- Lemma: Let $\theta \in \text{Con } \mathbf{A}$ be such that $\theta \subseteq \theta_{\tau}$. Then $\theta \in \text{Con } (\mathbf{A}, \tau)$ holds.
- Lemma: If $x, y \in \tau(\mathbf{A})$, then $\Theta(x, y) = \Theta_{\tau}(x, y)$. Consequently, $\Theta(\phi) = \Theta_{\tau}(\phi)$ whenever $\phi \subseteq \tau(A)^2$.

- Lemma: Let $\theta \in \text{Con } \mathbf{A}$ be such that $\theta \subseteq \theta_{\tau}$. Then $\theta \in \text{Con } (\mathbf{A}, \tau)$ holds.
- Lemma: If $x, y \in \tau(\mathbf{A})$, then $\Theta(x, y) = \Theta_{\tau}(x, y)$. Consequently, $\Theta(\phi) = \Theta_{\tau}(\phi)$ whenever $\phi \subseteq \tau(A)^2$.
- if $(\mathbf{C}, \tau \hookrightarrow)(\mathbf{B} \times \mathbf{B}, \tau_B), (\mathbf{C}, \tau)$ is said to be a subdiagonal state-morphism algebra

Theorem 0.16 Let (A, τ) be a subdirectly irreducible state-morphism algebra such that A is subdirectly reducible. Then there is a subdirectly irreducible algebra B such that (A, τ) is B-subdiagonal.

- **Theorem 0.18** Let (A, τ) be a subdirectly irreducible state-morphism algebra such that A is subdirectly reducible. Then there is a subdirectly irreducible algebra B such that (A, τ) is B-subdiagonal.
- **Theorem 0.19** For every subdirectly irreducible state-morphism algebra (\mathbf{A}, τ) , there is a subdirectly irreducible algebra \mathbf{B} such that (\mathbf{A}, τ) is \mathbf{B} -subdiagonal.

- **Theorem 0.20** Let (A, τ) be a subdirectly irreducible state-morphism algebra such that A is subdirectly reducible. Then there is a subdirectly irreducible algebra B such that (A, τ) is B-subdiagonal.
- **Theorem 0.21** For every subdirectly irreducible state-morphism algebra (\mathbf{A}, τ) , there is a subdirectly irreducible algebra \mathbf{B} such that (\mathbf{A}, τ) is \mathbf{B} -subdiagonal.
- * \mathcal{K} of algebras of the same type, $I(\mathcal{K})$, $H(\mathcal{K})$, $S(\mathcal{K})$ and $P(\mathcal{K})$ $D(\mathcal{K})$

Theorem 0.22 (1) For every class \mathcal{K} of algebras of the same type F, $V(D(\mathcal{K})) = V(\mathcal{K})_{\tau}$. (2) Let \mathcal{K}_1 and \mathcal{K}_2 be two classes of same type algebras. Then $V(D(\mathcal{K}_1)) = V(D(\mathcal{K}_2))$ if and only if $V(\mathcal{K}_1) = V(\mathcal{K}_2)$.

Theorem 0.24 (1) For every class K of algebras of the same type F, $V(D(K)) = V(K)_{\tau}$. (2) Let K_1 and K_2 be two classes of same type algebras. Then $V(D(K_1)) = V(D(K_2))$ if and

only if $V(\mathcal{K}_1) = V(\mathcal{K}_2)$.

Theorem 0.25 If a system K of algebras of the same type F generates the whole variety V(F) of all algebras of type F, then the variety $V(F)_{\tau}$ of all state-morphism algebras (\mathbf{A}, τ) , where $\mathbf{A} \in V(F)$, is generated by the class $\{D(\mathbf{A}) : \mathbf{A} \in K\}$.

Theorem 0.26 If A is a subdirectly irreducible algebra, then any state-morphism algebra (A, τ) is subdirectly irreducible.

- **Theorem 0.28** If A is a subdirectly irreducible algebra, then any state-morphism algebra (A, τ) is subdirectly irreducible.
- **Theorem 0.29** A variety V_{τ} satisfy the CEP if and only if V satisfies the CEP.

The variety of all state-morphism MV-algebras is generated by the diagonal state-morphism MV-algebra $D([0,1]_{MV})$.

- The variety of all state-morphism MV-algebras is generated by the diagonal state-morphism MV-algebra $D([0,1]_{MV})$.
- The variety of all state-morphism BL-algebras is generated by the class $\{D(\mathbb{I}_t) : \mathbb{I}_t \in \mathcal{T}\}$.

- The variety of all state-morphism MV-algebras is generated by the diagonal state-morphism MV-algebra $D([0,1]_{MV})$.
- The variety of all state-morphism BL-algebras is generated by the class $\{D(\mathbb{I}_t) : \mathbb{I}_t \in \mathcal{T}\}$.
- The variety of all state-morphism MTL-algebras is generated by the class $\{D(\mathbb{I}_t): \mathbb{I}_t \in \mathcal{T}_{lc}\}.$

- The variety of all state-morphism MV-algebras is generated by the diagonal state-morphism MV-algebra $D([0,1]_{MV})$.
- The variety of all state-morphism BL-algebras is generated by the class $\{D(\mathbb{I}_t) : \mathbb{I}_t \in \mathcal{T}\}.$
- The variety of all state-morphism MTL-algebras is generated by the class $\{D(\mathbb{I}_t): \mathbb{I}_t \in \mathcal{T}_{lc}\}.$
- The variety of all state-morphism naBL-algebras is generated by the class $\{D(\mathbb{I}_t^{na}): \mathbb{I}_t \in na\mathcal{T}\}$.

If a unital ℓ -group (G, u) is double transitive, then $D(\Gamma(G, u))$ generates the variety of state-morphism pseudo MV-algebras.

References

A. Di Nola, A. Dvurečenskij, *State-morphism MV-algebras,* Ann. Pure Appl. Logic **161** (2009),
161–173.

References

- A. Di Nola, A. Dvurečenskij, State-morphism MV-algebras, Ann. Pure Appl. Logic 161 (2009), 161–173.
- A. Di Nola, A. Dvurečenskij, A. Lettieri, *Erratum* "State-morphism MV-algebras" [Ann. Pure Appl. Logic 161 (2009) 161-173], Ann. Pure Appl. Logic 161 (2010), 1605–1607.

References

- A. Di Nola, A. Dvurečenskij, *State-morphism MV-algebras,* Ann. Pure Appl. Logic **161** (2009),
 161–173.
- A. Di Nola, A. Dvurečenskij, A. Lettieri, *Erratum* "State-morphism MV-algebras" [Ann. Pure Appl. Logic 161 (2009) 161-173], Ann. Pure Appl. Logic 161 (2010), 1605–1607.
- A. Dvurečenskij, *Subdirectly irreducible* state-morphism BL-algebras, Archive Math. Logic **50** (2011), 145–160.

A. Dvurečenskij, T. Kowalski, F. Montagna, State morphism MV-algebras, Inter. J. Approx. Reasoning http://arxiv.org/abs/1102.1088

- A. Dvurečenskij, T. Kowalski, F. Montagna, State morphism MV-algebras, Inter. J. Approx. Reasoning http://arxiv.org/abs/1102.1088
- M. Botur, A. Dvurečenskij, T. Kowalski, On normal-valued basic pseudo hoops,

- A. Dvurečenskij, T. Kowalski, F. Montagna, State morphism MV-algebras, Inter. J. Approx. Reasoning http://arxiv.org/abs/1102.1088
- M. Botur, A. Dvurečenskij, T. Kowalski, On normal-valued basic pseudo hoops,
- A. Di Nola, A. Dvurečenskij, A. Lettieri, On varieties of MV-algebras with internal states, Inter. J. Approx. Reasoning 51 (2010), 680–694.

- A. Dvurečenskij, T. Kowalski, F. Montagna, State morphism MV-algebras, Inter. J. Approx. Reasoning http://arxiv.org/abs/1102.1088
- M. Botur, A. Dvurečenskij, T. Kowalski, On normal-valued basic pseudo hoops,
- A. Di Nola, A. Dvurečenskij, A. Lettieri, *On varieties of MV-algebras with internal states,* Inter. J. Approx. Reasoning **51** (2010), 680–694.
- L.C. Ciungu, A. Dvurečenskij, M. Hyčko, State BL-algebras, Soft Computing

M. Botur, A. Dvurečenskij, State-morphism algebras - general approach, http://arxiv.org/submit/230594

Thank you for your attention