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Quantum Mechanics

• new physics, beginning 20th century
• Newton mechanics fails in the micro world
• Heisenberg Uncertainty Principle

σs(x)σs(y) ≥ ~ > 0.

x-momentum, y position of elementary
particle, s state -probability measure

• for classical mechanics

inf
s
(σs(x)σs(y)) = 0.
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• Hilbert, 1900, 6th Problem:
• To find a few physical axioms that, similar to the axioms

of geometry, can describe a theory for a class of
physical events that is as large as possible.

• Kolmogorov, probability theory, 1933,
• G. Birkhoff and J. von Neumann, 1936

quantum logic
• C.C. Chang, 1958 MV-algebras
• J. Łukasiewicz, 1922 many-valued logic
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Other Motivations

• psychiatry
• compound systems of computers
• quantum chemistry
• quantum computing
• Bell inequalities

p(a) + p(b)− p(a ∧ b) ≤ 1,

• (= p(a ∨ b)) test for a classical system
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Quantum structures

• Boolean algebras
• Orthomodular lattices
• Hilbert space H, L(H) the system of all

closed subspaces of H
• Orthomodular posets
• D-posets -Kôpka and Chovanec 1992
• effect algebras
• MV-algebras - compatibility
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States on Algebraic Structures

• G. Boole: if M -alg. str. C = A+ B, and P is a
probability, then P (A+ B) = P (A) + P (B);

• the operation + is a partial one on M

• M is a BA, A+ B := A ∪B whenever
A ∩B = ∅ ⇔ A ≤ B′

• A and B mutually excluding - summable -
orthogonal

• state or FAS on an algebraic structure
(M ; +,′ , 0, 1), s : M → [0, 1] (i) s(1) = 1, (ii)
s(a+ b) = s(a) + s(b) if a+ b ∈ M
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States on L(H)

• L(H), E(H) = {A ∈ B(H) : O ≤ A ≤ I}

• sφ(M) = (PMφ, φ),M ∈ L(H), φ ∈ H, ‖φ‖ = 1

s(M) =
∑
i

λisφi
(M) = tr(TPM), M ∈ L(H).

Gleason theorem, 1957, 3 ≤ dimH ≤ ℵ0,

• If s is a FAS L(H), Aarnes

s = λs1 + (1− λ)s2

s1 is a σ-additive, s2 a FAS vanishing on each
finite-dimensional subspace of H.
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Applications of Gleason’s Theorem

• s(M) = tr(TPM), M ∈ L(H)

• dimH = 2 - Gleason’ Theorem not valid
• Gleason’s Theorem holds for nonseparable iff
dimH is a non-measurable cardinal

• Ulam, I- non-measurable cardinal if there
exists no probability measure on 2I vanishing
on each i ∈ I.

• von Neumann algebra V - extension from
FAS from L(V ) to V .
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States on MV-algebras

•• M - MV-algebra, we define a partial operation
+, via a+ b is defined iff a ≤ b∗ iff a⊙ b = 0,
then a+ b := a⊕ b.

• + restriction of the ℓ-group addition
• state- s : M → [0, 1], (i) s(a+ b) = s(a) + s(b),

(ii) s(1) = 1.

• S(M) -set of states. S(M) 6= ∅.

• extremal state s = λs1 + (1− λ)s2 for
λ ∈ (0, 1) ⇒ s = s1 = s2.
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•• {sα} → s iff limα sα(a) → s(a), a ∈ M.

• S(E) - Hausdorff compact topological space,
∂eS(M)

• Krein-Mil’man S(M) = Cl(ConHul(∂eS(M))

• s is extremal iff s(a ∧ b) = min{s(a), s(b)} iff s
is MV-homomorphism iff Ker(s) is a maximal
ideal.

• s ↔ Ker(s), 1-1 correspondence
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••• every maximal ideal is a kernel of a unique
state

• Kernel-hull topology = ∂eS(E) set of extremal
states

• Kroupa- Panti a 7→ â, â(s) := s(a),

s(a) =

∫
∂eS(M)

â(t)dµs(t)

• µs - unique Borel σ-additive probability
measure on B(S(M)) such that
µs(∂eS(M)) = 1. A General Approach to State-Morphism MV-Algebras – p. 12
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State MV-algebras

•••• MV-algebras with a state are not universal
algebras, and therefore, the do not provide an
algebraizable logic for probability reasoning
over many-valued events

• Flaminio-Montagna - introduce an
algebraizable logic whose equivalent
algebraic semantics is the variety of state
MV-algebras

• A state MV-algebra is a pair (M, τ), M -
MV-algebra, τ unary operation on A s.t.
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• τ(1) = 1

• τ(x⊕ y) = τ(x)⊕ τ(t⊖ (x⊙ y))

• τ(x∗) = τ(x)∗

• τ(τ(x)⊕ τ(y)) = τ(x)⊕ τ(y)

• τ -internal operator, state operator
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Properties

• τ 2 = τ

• τ(M) is an MV-algebra and τ on τ(M) -
identity

• τ(x+ y) = τ(x) + τ(y)

• τ(x⊙ y) = τ(x)⊙ τ(y) if x⊙ y = 0.

• if (M, τ) is s.i., then τ(M) is a chain

• if (M, τ) is s.i., then M is not necessarily a
chain
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• F -filter, τ -filter if τ(F ) ⊆ F.
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•• F -filter, τ -filter if τ(F ) ⊆ F.

• 1-1 correspondence congruences and
τ -filters

• M = [0, 1] × [0, 1], τ(x, y) = (x, x) s.i. - not
chain

• state-morphism (M, τ), τ is an idempotent
endomorphism

• s state on M , [0, 1]⊗M ,
τs(α⊗ a) := α · s(a)⊗ 1
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•• ([0, 1]⊗, τs) is an SMV-algebra.
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•• ([0, 1]⊗, τs) is an SMV-algebra.

• ([0, 1]⊗, τs) is an SMMV-algebra iff s is an
extremal state

• if M is a chain, every SMV-algebra (M, τ) is
an SMMV-algebra

• if τ(M) ∈ V(S1, . . . , Sn) for some n ≥ 1, then
(M, τ) is an SMMV-algebra

• Iff τ((n+ 1)x) = τ(nx)
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State BL-algebras

•• M - BL-algebra. A map τ : M → M s.t.

(1)BL τ(0) = 0;

(2)BL τ(x → y) = τ(x) → τ(x ∧ y);

(3)BL τ(x⊙ y) = τ(x)⊙ τ(x → (x⊙ y));

(4)BL τ(τ(x)⊙ τ(y)) = τ(x)⊙ τ(y);

(5)BL τ(τ(x) → τ(y)) = τ(x) → τ(y)

state-operator on M, pair (M, τ) - state BL-algebra
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State BL-algebras

••••• M - BL-algebra. A map τ : M → M s.t.

(1)BL τ(0) = 0;

(2)BL τ(x → y) = τ(x) → τ(x ∧ y);

(3)BL τ(x⊙ y) = τ(x)⊙ τ(x → (x⊙ y));

(4)BL τ(τ(x)⊙ τ(y)) = τ(x)⊙ τ(y);

(5)BL τ(τ(x) → τ(y)) = τ(x) → τ(y)

state-operator on M, pair (M, τ) - state BL-algebra

• If τ : M → M is a BL-endomorphism s.t.
τ ◦ τ = τ, - state-morphism operator and the
couple (M, τ) - state-morphism BL-algebra.
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••••• every state operator on a linear BL-algebra is
a state-morphism
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•••• every state operator on a linear BL-algebra is
a state-morphism

• Example 0.2 Let M be a BL-algebra. On M ×M
we define two operators, τ1 and τ2, as follows

τ1(a, b) = (a, a), τ2(a, b) = (b, b), (a, b) ∈ M×M.

(2.0)
Then τ1 and τ2 are two state-morphism operators on
M ×M.
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•• every state operator on a linear BL-algebra is
a state-morphism

• Example 0.3 Let M be a BL-algebra. On M ×M
we define two operators, τ1 and τ2, as follows

τ1(a, b) = (a, a), τ2(a, b) = (b, b), (a, b) ∈ M×M.

(2.0)
Then τ1 and τ2 are two state-morphism operators on
M ×M.

• Ker(τ) = {a ∈ M : τ(a) = 1}.
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•••• We say that two subhoops, A and B, of a
BL-algebra M have the disjunction property if
for all x ∈ A and y ∈ B, if x ∨ y = 1, then
either x = 1 or y = 1.
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••••• We say that two subhoops, A and B, of a
BL-algebra M have the disjunction property if
for all x ∈ A and y ∈ B, if x ∨ y = 1, then
either x = 1 or y = 1.

• Lemma 0.5 Suppose that (M, τ) is a state
BL-algebra. Then:

(1) If τ is faithful, then (M, τ) is a subdirectly
irreducible state BL-algebra if and only if
τ(M) is a subdirectly irreducible
BL-algebra.

Now let (M, τ) be subdirectly irreducible.
Then:

A General Approach to State-Morphism MV-Algebras – p. 20



•• (2) Ker(τ) is (either trivial or) a subdirectly
irreducible hoop.

(3) Ker(τ) and τ(M) have the disjunction
property.
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•• (2) Ker(τ) is (either trivial or) a subdirectly
irreducible hoop.

(3) Ker(τ) and τ(M) have the disjunction
property.

• Theorem 0.7 Let (M, τ) be a state
BL-algebra satisfying conditions (1), (2) and (3)
in the last Lemma. Then (M, τ) is subdirectly
irreducible.
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•• Theorem 0.8 A state-morphism BL-algebra
(M, τ) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.
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•• Theorem 0.9 A state-morphism BL-algebra
(M, τ) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.

• (i) M is linear, τ = idM , and the BL-reduct M
is a subdirectly irreducible BL-algebra.

A General Approach to State-Morphism MV-Algebras – p. 22



••••• Theorem 0.10 A state-morphism BL-algebra
(M, τ) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.

• (i) M is linear, τ = idM , and the BL-reduct M
is a subdirectly irreducible BL-algebra.

• (ii) The state-morphism operator τ is not
faithful, M has no nontrivial Boolean
elements, and the BL-reduct M of (M, τ) is a
local BL-algebra, Ker(τ) is a subdirectly
irreducible irreducible hoop, and Ker(τ) and
τ(M) have the disjunction property.
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•• Theorem 0.11 A state-morphism BL-algebra
(M, τ) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.

• (i) M is linear, τ = idM , and the BL-reduct M
is a subdirectly irreducible BL-algebra.

• (ii) The state-morphism operator τ is not
faithful, M has no nontrivial Boolean
elements, and the BL-reduct M of (M, τ) is a
local BL-algebra, Ker(τ) is a subdirectly
irreducible irreducible hoop, and Ker(τ) and
τ(M) have the disjunction property.
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•• Theorem 0.12 A state-morphism BL-algebra
(M, τ) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.

• (i) M is linear, τ = idM , and the BL-reduct M
is a subdirectly irreducible BL-algebra.

• (ii) The state-morphism operator τ is not
faithful, M has no nontrivial Boolean
elements, and the BL-reduct M of (M, τ) is a
local BL-algebra, Ker(τ) is a subdirectly
irreducible irreducible hoop, and Ker(τ) and
τ(M) have the disjunction property.
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•• Theorem 0.13 A state-morphism BL-algebra
(M, τ) is subdirectly irreducible irreducible if
and only if one of the following three
possibilities holds.

• (i) M is linear, τ = idM , and the BL-reduct M
is a subdirectly irreducible BL-algebra.

• (ii) The state-morphism operator τ is not
faithful, M has no nontrivial Boolean
elements, and the BL-reduct M of (M, τ) is a
local BL-algebra, Ker(τ) is a subdirectly
irreducible irreducible hoop, and Ker(τ) and
τ(M) have the disjunction property.
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•• Moreover, M is linearly ordered if and only if
Rad1(M) is linearly ordered, and in such a
case, M is a subdirectly irreducible
BL-algebra such that if F is the smallest
nontrivial state-filter for (M, τ), then F is the
smallest nontrivial BL-filter for M.
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••••• Moreover, M is linearly ordered if and only if
Rad1(M) is linearly ordered, and in such a
case, M is a subdirectly irreducible
BL-algebra such that if F is the smallest
nontrivial state-filter for (M, τ), then F is the
smallest nontrivial BL-filter for M.

• If Rad(M) = Ker(τ), then M is linearly ordered.
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••••• (iii) The state-morphism operator τ is not
faithful, M has a nontrivial Boolean element.
There are a linearly ordered BL-algebra A, a
subdirectly irreducible BL-algebra B, and an
injective BL-homomorphism h : A → B such
that (M, τ) is isomorphic as a state-morphism
BL-algebra with the state-morphism
BL-algebra (A× B, τh), where
τh(x, y) = (x, h(x)) for any (x, y) ∈ A× B.
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Varieties of SMMV-algebras

•••••• Komori - countably many subvarieties of
MV-algebras
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Varieties of SMMV-algebras

• Komori - countably many subvarieties of
MV-algebras

• V-variety of MV-algebras, Vτ -system of
SMMV-algebras (M, τ) s.t M ∈ V ∈ V .
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MV-algebras

• V-variety of MV-algebras, Vτ -system of
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• D(M) := (M ×M, τM )

• V(D) = V(M)τ
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Varieties of SMMV-algebras

• Komori - countably many subvarieties of
MV-algebras

• V-variety of MV-algebras, Vτ -system of
SMMV-algebras (M, τ) s.t M ∈ V ∈ V .

• D(M) := (M ×M, τM )

• V(D) = V(M)τ

• SMMV = V(D([0, 1]))
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Varieties of SMMV-algebras

• Komori - countably many subvarieties of
MV-algebras

• V-variety of MV-algebras, Vτ -system of
SMMV-algebras (M, τ) s.t M ∈ V ∈ V .

• D(M) := (M ×M, τM )

• V(D) = V(M)τ

• SMMV = V(D([0, 1]))

• Pτ = V(D(C)), P perfect MV-algebras, C-
Chang
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• Theorem: VI ⊆ VR ⊆ VL ⊆ Vτ . and all
inclusions are proper of V is not finitely
generated.

A General Approach to State-Morphism MV-Algebras – p. 26



•• Theorem: VI ⊆ VR ⊆ VL ⊆ Vτ . and all
inclusions are proper of V is not finitely
generated.

• Theorem: Representable SMMV-algebras:

τ(x) ∨ (x → (τ(y) ↔ y)) = 1.
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•• Theorem: VI ⊆ VR ⊆ VL ⊆ Vτ . and all
inclusions are proper of V is not finitely
generated.

• Theorem: Representable SMMV-algebras:

τ(x) ∨ (x → (τ(y) ↔ y)) = 1.

• also for BL-algebra
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•• Theorem: VI ⊆ VR ⊆ VL ⊆ Vτ . and all
inclusions are proper of V is not finitely
generated.

• Theorem: Representable SMMV-algebras:

τ(x) ∨ (x → (τ(y) ↔ y)) = 1.

• also for BL-algebra
• Theorem: VL - generated by those (M, τ), M

is local
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•• Theorem: VI ⊆ VR ⊆ VL ⊆ Vτ . and all
inclusions are proper of V is not finitely
generated.

• Theorem: Representable SMMV-algebras:

τ(x) ∨ (x → (τ(y) ↔ y)) = 1.

• also for BL-algebra
• Theorem: VL - generated by those (M, τ), M

is local
•

(τ(x) ↔ x)∗ ≤ (τ(x) ↔ x).
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Uncountable many subvarieties

•• [0, 1]∗ ultrapower, fox positive infinitesimal
ǫ ∈ [0, 1]∗
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Uncountable many subvarieties

• [0, 1]∗ ultrapower, fox positive infinitesimal
ǫ ∈ [0, 1]∗

• X subset of prime numbers, A(X)
MV-algebra generated by ǫ and n

m
s.t
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Uncountable many subvarieties

• [0, 1]∗ ultrapower, fox positive infinitesimal
ǫ ∈ [0, 1]∗

• X subset of prime numbers, A(X)
MV-algebra generated by ǫ and n

m
s.t

• (1) either n = 0 or g.c.d(n,m) = 1
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Uncountable many subvarieties

• [0, 1]∗ ultrapower, fox positive infinitesimal
ǫ ∈ [0, 1]∗

• X subset of prime numbers, A(X)
MV-algebra generated by ǫ and n

m
s.t

• (1) either n = 0 or g.c.d(n,m) = 1

• ∀p ∈ X, p does not divide m
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Uncountable many subvarieties

• [0, 1]∗ ultrapower, fox positive infinitesimal
ǫ ∈ [0, 1]∗

• X subset of prime numbers, A(X)
MV-algebra generated by ǫ and n

m
s.t

• (1) either n = 0 or g.c.d(n,m) = 1

• ∀p ∈ X, p does not divide m

• τ(x)= standard part of x
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Uncountable many subvarieties

• [0, 1]∗ ultrapower, fox positive infinitesimal
ǫ ∈ [0, 1]∗

• X subset of prime numbers, A(X)
MV-algebra generated by ǫ and n

m
s.t

• (1) either n = 0 or g.c.d(n,m) = 1

• ∀p ∈ X, p does not divide m

• τ(x)= standard part of x

• (A(X), τ) is linearly ordered SMMV-algebra
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• if X 6= Y , then V(A(X)) 6= V(A(Y ))
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••••• if X 6= Y , then V(A(X)) 6= V(A(Y ))

• Theorem: Between MVI and MVR there is
uncountably many varieties
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Generators of SMBL-algebras

••••• t-norm- function t : [0, 1]× [0, 1] → [0, 1] such
that (i) t is commutative, associative, (ii)
t(x, 1) = x, x ∈ [0, 1], and (iii) t is
nondecreasing in both components.
Moreover, the variety of all BL-algebras is
generated by all It with a continuous t-norm t.
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Generators of SMBL-algebras

•• t-norm- function t : [0, 1]× [0, 1] → [0, 1] such
that (i) t is commutative, associative, (ii)
t(x, 1) = x, x ∈ [0, 1], and (iii) t is
nondecreasing in both components.
Moreover, the variety of all BL-algebras is
generated by all It with a continuous t-norm t.

• If t is continuous, we define x⊙t y = t(x, y)
and x →t y = sup{z ∈ [0, 1] : t(z, x) ≤ y} for
x, y ∈ [0, 1], then
It := ([0, 1],min,max,⊙t,→t, 0, 1) is a
BL-algebra.
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Generators of SMBL-algebras

•••• t-norm- function t : [0, 1]× [0, 1] → [0, 1] such
that (i) t is commutative, associative, (ii)
t(x, 1) = x, x ∈ [0, 1], and (iii) t is
nondecreasing in both components.
Moreover, the variety of all BL-algebras is
generated by all It with a continuous t-norm t.

• If t is continuous, we define x⊙t y = t(x, y)
and x →t y = sup{z ∈ [0, 1] : t(z, x) ≤ y} for
x, y ∈ [0, 1], then
It := ([0, 1],min,max,⊙t,→t, 0, 1) is a
BL-algebra.

• Moreover, the variety of all BL-algebras isA General Approach to State-Morphism MV-Algebras – p. 29



•••• T denotes the system of all BL-algebras It,
where t is a continuous t-norm on the interval
[0, 1],
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•• T denotes the system of all BL-algebras It,
where t is a continuous t-norm on the interval
[0, 1],

• Theorem 0.15 The variety of all
state-morphism BL-algebras is generated by
the class T .
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General Approach - State-Morphism Algebras

•• A an algebra of type F , τ an idempotent
endomorphism of A, (A, τ) state-morphism
algebra
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General Approach - State-Morphism Algebras

•• A an algebra of type F , τ an idempotent
endomorphism of A, (A, τ) state-morphism
algebra

• θτ = {(x, y) ∈ A× A : τ(x) = τ(y)},
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General Approach - State-Morphism Algebras

•• A an algebra of type F , τ an idempotent
endomorphism of A, (A, τ) state-morphism
algebra

• θτ = {(x, y) ∈ A× A : τ(x) = τ(y)},

• φ ⊆ A2, Φ(φ), Φτ (φ) congruence generated by
φ on A and (A, τ)
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General Approach - State-Morphism Algebras

•• A an algebra of type F , τ an idempotent
endomorphism of A, (A, τ) state-morphism
algebra

• θτ = {(x, y) ∈ A× A : τ(x) = τ(y)},

• φ ⊆ A2, Φ(φ), Φτ (φ) congruence generated by
φ on A and (A, τ)

• Lemma: For any φ ∈ Con τ(A), we have
θφ ∈ Con (A, τ), and θφ ∩ τ(A)2 = φ. In
addition, θτ ∈ Con (A, τ), φ ⊆ θφ, and
Θτ(φ) ⊆ θφ.
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•• Lemma: Let θ ∈ ConA be such that θ ⊆ θτ .
Then θ ∈ Con (A, τ) holds.
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•••• Lemma: Let θ ∈ ConA be such that θ ⊆ θτ .
Then θ ∈ Con (A, τ) holds.

• Lemma: If x, y ∈ τ(A), then
Θ(x, y) = Θτ(x, y). Consequently,
Θ(φ) = Θτ(φ) whenever φ ⊆ τ(A)2.
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•••• Lemma: Let θ ∈ ConA be such that θ ⊆ θτ .
Then θ ∈ Con (A, τ) holds.

• Lemma: If x, y ∈ τ(A), then
Θ(x, y) = Θτ(x, y). Consequently,
Θ(φ) = Θτ(φ) whenever φ ⊆ τ(A)2.

• if (C, τ →֒)(B×B, τB), (C, τ) is said to be a
subdiagonal state-morphism algebra
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•••• Theorem 0.16 Let (A, τ) be a subdirectly
irreducible state-morphism algebra such that
A is subdirectly reducible. Then there is a
subdirectly irreducible algebra B such that
(A, τ) is B-subdiagonal.
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•• Theorem 0.18 Let (A, τ) be a subdirectly
irreducible state-morphism algebra such that
A is subdirectly reducible. Then there is a
subdirectly irreducible algebra B such that
(A, τ) is B-subdiagonal.

• Theorem 0.19 For every subdirectly
irreducible state-morphism algebra (A, τ),
there is a subdirectly irreducible algebra B

such that (A, τ) is B-subdiagonal.
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•• Theorem 0.20 Let (A, τ) be a subdirectly
irreducible state-morphism algebra such that
A is subdirectly reducible. Then there is a
subdirectly irreducible algebra B such that
(A, τ) is B-subdiagonal.

• Theorem 0.21 For every subdirectly
irreducible state-morphism algebra (A, τ),
there is a subdirectly irreducible algebra B

such that (A, τ) is B-subdiagonal.

• K of algebras of the same type, I(K), H(K),
S(K) and P(K) D(K)
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•••• Theorem 0.22 (1) For every class K of
algebras of the same type F,
V(D(K)) = V(K)τ .
(2) Let K1 and K2 be two classes of same type
algebras. Then V(D(K1)) = V(D(K2)) if and
only if V(K1) = V(K2).
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•• Theorem 0.24 (1) For every class K of
algebras of the same type F,
V(D(K)) = V(K)τ .
(2) Let K1 and K2 be two classes of same type
algebras. Then V(D(K1)) = V(D(K2)) if and
only if V(K1) = V(K2).

• Theorem 0.25 If a system K of algebras of
the same type F generates the whole variety
V(F ) of all algebras of type F, then the variety
V(F )τ of all state-morphism algebras (A, τ),
where A ∈ V(F ), is generated by the class
{D(A) : A ∈ K}.
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•• Theorem 0.26 If A is a subdirectly irreducible
algebra, then any state-morphism algebra
(A, τ) is subdirectly irreducible.
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•• Theorem 0.28 If A is a subdirectly irreducible
algebra, then any state-morphism algebra
(A, τ) is subdirectly irreducible.

• Theorem 0.29 A variety Vτ satisfy the CEP if
and only if V satisfies the CEP.
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Applications

•• The variety of all state-morphism
MV-algebras is generated by the diagonal
state-morphism MV-algebra D([0, 1]MV ).
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Applications

••• The variety of all state-morphism
MV-algebras is generated by the diagonal
state-morphism MV-algebra D([0, 1]MV ).

• The variety of all state-morphism BL-algebras
is generated by the class {D(It) : It ∈ T }.

• The variety of all state-morphism
MTL-algebras is generated by the class
{D(It) : It ∈ Tlc}.

• The variety of all state-morphism
naBL-algebras is generated by the class
{D(Inat ) : It ∈ naT }.
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••• If a unital ℓ-group (G, u) is double transitive,
then D(Γ(G, u)) generates the variety of
state-morphism pseudo MV-algebras.
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Thank you for your attention
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