Monadic Predicate Łukasiewicz Logic. Standard versus General Tautologies

Félix Bou

University of Barcelona (UB)
bou@ub.edu
May 20th
ASUV 2011 (Salerno)

Classical Predicate Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge)+$ vocabulary ϑ

Classical Predicate Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge)+$ vocabulary ϑ
- Examples of Sentences: $\forall x P x, \forall x \exists y R x y$, etc.

Classical Predicate Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge)+$ vocabulary ϑ
- Examples of Sentences: $\forall x P x, \forall x \exists y R x y$, etc.
- Semantics: 2-valued (for every structure, we get a mapping from sentences into $\{0,1\}$).

Classical Predicate Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge)+$ vocabulary ϑ
- Examples of Sentences: $\forall x P x, \forall x \exists y R x y$, etc.
- Semantics: 2-valued (for every structure, we get a mapping from sentences into $\{0,1\}$).

Full vocabulary

- Valid sentences are recursively enumerable (Gödel)
- Undecidability of valid sentences (Church, ...)
- $F O^{2}$ is decidable: "effective fmp" holds (Scott, Mortimer)
- FO^{3} is undecidable (Surányi, ...)

Classical Predicate Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge)+$ vocabulary ϑ
- Examples of Sentences: $\forall x P x, \forall x \exists y R x y$, etc.
- Semantics: 2-valued (for every structure, we get a mapping from sentences into $\{0,1\}$).

Full vocabulary

- Valid sentences are recursively enumerable (Gödel)
- Undecidability of valid sentences (Church, ...)
- $F O^{2}$ is decidable: "effective fmp" holds (Scott, Mortimer)
- FO^{3} is undecidable (Surányi, ...)

Monadic vocabulary: $P_{1}, P_{2}, P_{3}, \ldots$

- Decidability of valid sentences: filtration method provides an "effective fmp" (Löwenheim).

Predicate Łukasiewicz (standard) Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge, \rightarrow)+$ vocabulary ϑ

Predicate Łukasiewicz (standard) Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge, \rightarrow)+$ vocabulary ϑ
- Definable symbols: \odot, \oplus, \ominus, etc.

Predicate Łukasiewicz (standard) Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge, \rightarrow)+$ vocabulary ϑ
- Definable symbols: \odot, \oplus, \ominus, etc.
- Examples of Sentences: $\forall x P x, \forall x \exists y R x y$, etc.

Predicate Łukasiewicz (standard) Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge, \rightarrow)+$ vocabulary ϑ
- Definable symbols: \odot, \oplus, \ominus, etc.
- Examples of Sentences: $\forall x P x, \forall x \exists y R x y$, etc.
- Semantics: [0, 1]-valued (for every structure, we get a mapping from sentences into $[0,1]$).

Predicate Łukasiewicz (standard) Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge, \rightarrow)+$ vocabulary ϑ
- Definable symbols: \odot, \oplus, \ominus, etc.
- Examples of Sentences: $\forall x P x, \forall x \exists y R x y$, etc.
- Semantics: $[0,1]$-valued (for every structure, we get a mapping from sentences into $[0,1]$).

FUZZY STRUCTURE

(e) $P(e)=0.2$
$P(d)=1$ (d)

(a) $P(a)=0.75$

Predicate Łukasiewicz (standard) Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge, \rightarrow)+$ vocabulary ϑ
- Definable symbols: \odot, \oplus, \ominus, etc.
- Examples of Sentences: $\forall x P x, \forall x \exists y R x y$, etc.
- Semantics: $[0,1]$-valued (for every structure, we get a mapping from sentences into $[0,1]$).

FUZZY STRUCTURE
(e) $P(e)=0.2$

$$
\forall x P x=\quad \exists x(P x \vee \neg P x)=
$$

(a) $P(a)=0.75$

Predicate Łukasiewicz (standard) Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge, \rightarrow)+$ vocabulary ϑ
- Definable symbols: \odot, \oplus, \ominus, etc.
- Examples of Sentences: $\forall x P x, \forall x \exists y R x y$, etc.
- Semantics: $[0,1]$-valued (for every structure, we get a mapping from sentences into $[0,1]$).

FUZZY STRUCTURE

(e) $P(e)=0.2$

$$
\forall x P x=0.2 \quad \exists x(P x \vee \neg P x)=
$$

(a) $P(a)=0.75$

Predicate Łukasiewicz (standard) Logic

- Syntax: Primitive symbols $(\forall, \exists, \neg, \vee, \wedge, \rightarrow)+$ vocabulary ϑ
- Definable symbols: \odot, \oplus, \ominus, etc.
- Examples of Sentences: $\forall x P x, \forall x \exists y R x y$, etc.
- Semantics: $[0,1]$-valued (for every structure, we get a mapping from sentences into $[0,1]$).

FUZZY STRUCTURE
(e) $P(e)=0.2$

$$
\forall x P x=0.2 \quad \exists x(P x \vee \neg P x)=1
$$

Three semantics using MV-chains

- Standard (stLV): [0, 1]-valued
- General (genLV): A-valued (where A is an arbitrary MV-chain) structures requiring "safeness" condition (all formulas in ϑ have a truth value).
- Supersound (spsLV): A-valued (where A is an arbitrary MV-chain) structures only requiring the existence of the value of your formula.

Some Trivial Remarks

Three semantics using MV-chains

- Standard (stLV): [0, 1]-valued
- General (genLV): A-valued (where A is an arbitrary MV-chain) structures requiring "safeness" condition (all formulas in ϑ have a truth value).
- Supersound (spsLV): A-valued (where A is an arbitrary MV-chain) structures only requiring the existence of the value of your formula.

Some Trivial Remarks

- sps $L \forall \subseteq g e n L \forall \subseteq s t L \forall$

Three semantics using MV-chains

- Standard (stLV): [0, 1]-valued
- General (genL \forall): A-valued (where A is an arbitrary MV-chain) structures requiring "safeness" condition (all formulas in ϑ have a truth value).
- Supersound ($s p s L \forall$): A-valued (where \mathbf{A} is an arbitrary MV-chain) structures only requiring the existence of the value of your formula.

Some Trivial Remarks

- sps $L \forall \subseteq$ gen $L \forall \subseteq s t L \forall$
- Safeness holds when \mathbf{A} is complete (e.g., \mathbf{A} finite).

Three semantics using MV-chains

- Standard (stLV): [0, 1]-valued
- General (genL \forall): A-valued (where A is an arbitrary MV-chain) structures requiring "safeness" condition (all formulas in ϑ have a truth value).
- Supersound (spsLV): A-valued (where A is an arbitrary MV-chain) structures only requiring the existence of the value of your formula.

Some Trivial Remarks

- sps $L \forall \subseteq$ gen $L \forall \subseteq s t L \forall$
- Safeness holds when \mathbf{A} is complete (e.g., \mathbf{A} finite).
- Safeness holds in the following cases: finite structures, structures where the range of vocabulary symbols is finite ("secure"), witnessed structures.

Full vocabulary

- gen $L \forall$ is Σ_{1}-complete (Chang, Belluce)
- stL \forall is not in Σ_{1} (Scarpellini)
- $s t L \forall$ is Π_{2}-complete (Ragaz)
- $\operatorname{stL} \forall=\bigcap_{n \in \omega} \operatorname{Taut}\left(L_{n}\right)=\operatorname{Taut}([0,1] \cap \mathbb{Q})$. (Rutledge)
- General and standard semantics are complete for witnessed structures (Hájek)

Full vocabulary

- genL \forall is Σ_{1}-complete (Chang, Belluce)
- stL \forall is not in Σ_{1} (Scarpellini)
- stL \forall is Π_{2}-complete (Ragaz)
- $\operatorname{stL} \forall=\bigcap_{n \in \omega} \operatorname{Taut}\left(L_{n}\right)=\operatorname{Taut}([0,1] \cap \mathbb{Q})$. (Rutledge)
- General and standard semantics are complete for witnessed structures (Hájek)

Monadic vocabulary: $P_{1}, P_{2}, P_{3}, \ldots$

- $s t L \forall$ is in Π_{1}. Filtration method shows $f m p$ (i.e., if $\varphi \notin s t L \forall$ then it is not valid in some finite $[0,1]$-structure) (Hájek)
- standard and general semantics coincide for $F O^{1}$, and it is decidable (Rutledge)
- standard and general semantics coincide for "classical formulas" (i.e., $\forall, \exists, \neg, \wedge, \vee$), and this fragment is decidable.
- From Scarpellini's (and Ragaz) result it follows that there are sentences which are standard tautologies while not general tautologies, but his proof do not provide us any explicit example.
- From Scarpellini's (and Ragaz) result it follows that there are sentences which are standard tautologies while not general tautologies, but his proof do not provide us any explicit example.
- Only very recently an explicit formula with this property has been given (by Hájek), but it requires quite a lot of machinery.
- From Scarpellini's (and Ragaz) result it follows that there are sentences which are standard tautologies while not general tautologies, but his proof do not provide us any explicit example.
- Only very recently an explicit formula with this property has been given (by Hájek), but it requires quite a lot of machinery.

A problem for this talk

Is there some "simple" sentence which is a standard
Łukasiewicz tautology but not a general Łukasiewicz tautology? Can we write one?

- From Scarpellini's (and Ragaz) result it follows that there are sentences which are standard tautologies while not general tautologies, but his proof do not provide us any explicit example.
- Only very recently an explicit formula with this property has been given (by Hájek), but it requires quite a lot of machinery.

A problem for this talk

Is there some "simple" sentence which is a standard
Łukasiewicz tautology but not a general Łukasiewicz tautology? Can we write one?

For the BL case, $\forall x(P x \odot P x) \rightarrow(\forall x P x \odot \forall x P x)$ does it.

- From Scarpellini's (and Ragaz) result it follows that there are sentences which are standard tautologies while not general tautologies, but his proof do not provide us any explicit example.
- Only very recently an explicit formula with this property has been given (by Hájek), but it requires quite a lot of machinery.

A problem for this talk

Is there some "simple" sentence which is a standard
Łukasiewicz tautology but not a general Łukasiewicz tautology? Can we write one?

For the BL case, $\forall x(P x \odot P x) \rightarrow(\forall x P x \odot \forall x P x)$ does it.
Intuition: In the monadic case, general Łukasiewicz semantics behaves like arbitrary classical models, while standard Łukasiewicz semantics behaves like finite classical models.

A related problem

Is the monadic fragment of $s t L \forall$ decidable?

A related problem

Is the monadic fragment of $s t L \forall$ decidable?
Next, we will sketch a proof that this fragment is Π_{1}-complete. We stress that we will not need a countable number of monadic predicate symbols.

A related problem
 Is the monadic fragment of $s t L \forall$ decidable?

Next, we will sketch a proof that this fragment is Π_{1}-complete. We stress that we will not need a countable number of monadic predicate symbols.
But first of all, let me make some historical remarks about this problem.
6.2. Läßt sich in Satz 6.1 die Anzahl der Prädikate auf drei, zwei oder eins reduzieren? Falls nein, sind die entsprechenden Mengen entscheidbar?
Hierzu sei noch bemerkt, da $ß$ es bereits in \mathscr{S}_{1} Sätze gibt, die nur unendliche Modelle haben, zum Beispiel $\exists x P x \wedge \forall x \exists y P y<P x$. Über die Menge der allgemeingültigen Formeln der einstelligen uendlichwertigen Prädikatenlogik findet sich in [14] die falsche Behauptung, daß Rutledge in seiner Dissertation [13] ihre Entscheidbarkeit bewiesen habe. In Wirklichkeit handelt es sich dort um den „Monadischen Prädikatenkalkül", welcher einer Prädikatenlogik entspricht, in welcher nur über eine Variable quantifiziert werden kann. Die Frage ist meines Wissens weiterhin offen:
6.3. Ist die Menge der allgemeingültigen Sätze der einstelligen unendlichwertigen Prädikatenlogik entscheidbar? Wenn nein, ist sie Π_{1}-vollständig?

Zum Schluß sei noch bemerkt, daß die Folgerungsrelation, also die Menge aller Paare (α, β), wo jedes Modell von α auch ein Modell von β ist, schon in der unendlichwertigen Logik mit fünf einstelligen Prädikaten Π_{2}-vollständig ist. Der Beweis (s. [11, 4.9, S. 63 ff .]) erfolgt durch eine Erweiterung der hier angewendeten Methode.
M. Ragaz, Archiv für Mathematische Logik, 1983 (23), 129-139

Let us mention in passing some false statements in the literature. As Ragaz mentions in [12], Scarpellini's claim saying that Rutledge has shown decidability of the set of 1-taululugies of the monadic Lukasiewicz predicate logic is false (since Rutledge's system allows only quantification of a single variable). Gottwald claims ([5], p. 232) that Rutledge [13] has shown the axiomatizability of the set of 1-tautologies of the monadic Łukasiewicz predicate calculus, and (p. 237) that Ragaz has shown its undecidability. It follows from the quotatinns above that both claims aro falso.

Let us mention in passing some false statements in the literature. As Ragaz mentions in [12], Scarpellini's claim saying that Rutledge has shown decidability of the set of 1-taululugies of the monadic Lukasiewicz predicate logic is false (since Rutledge's system allows only quantification of a single variable). Gottwald claims ([5], p. 232) that Rutledge [13] has shown the axiomatizability of the set of 1-tautologies of the monadic Łukasiewicz predicate calculus, and (p. 237) that Ragaz has shown its undecidability. It follows from the quotatinns above that both claims aro falso.

5. Monadic predicate t-norm logics F. Montagna, ARCH, 2005(44), 97-114

It is well-known that monadic classical predicate logic is decidable. In [BCF] it is shown that the monadic predicate Gödel logic over [0,1$]$ (i.e., the set of monadic predicate formulas which are valid in $\left.[0,1]_{G}\right)$ is undecidable. More generally, it makes sense to ask for which sets \mathbf{C} of t -norm BL-algebras the set $\operatorname{Taut}_{M}(\mathbf{C} \forall)$ of monadic predicate formulas valid in all algebras in \mathbf{C} is decidable.

Theorem 5.1. If \mathbf{C} is not included in $\left\{[0,1]_{L},[0,1]_{\Pi}\right\}$, then $\operatorname{Taut}_{M}(\mathbf{C} \forall)$ is undecidable.

Interpretability Method

- $\beta(x, y)$ is an arbitrary formula with just two free variables and which only involves unary predicate symbols (perhaps several)
- $\operatorname{Bival}(\beta)$ is the sentence $\forall x \forall y(\beta(x, y) \vee \neg \beta(x, y))$.
- φ is a classical sentence (i.e., it only involves $\forall, \exists, \neg, \wedge, \vee$) which only uses a binary predicate symbol R.
- $\varphi(R \mid \beta)$ is the result of replacing all $R x y$ with $\beta(x, y)$.

Interpretability Method

- $\beta(x, y)$ is an arbitrary formula with just two free variables and which only involves unary predicate symbols (perhaps several)
- $\operatorname{Bival}(\beta)$ is the sentence $\forall x \forall y(\beta(x, y) \vee \neg \beta(x, y))$.
- φ is a classical sentence (i.e., it only involves $\forall, \exists, \neg, \wedge, \vee$) which only uses a binary predicate symbol R.
- $\varphi(R \mid \beta)$ is the result of replacing all $R x y$ with $\beta(x, y)$.

Lemma (A Uniform Statement on β 's)
(1) If $\emptyset \models_{\text {fin }} \varphi$, then 2. $(\neg \operatorname{Bival}(\beta) \vee \varphi(R \mid \beta)) \in s t L \forall$.
(2) If $\emptyset \models \varphi$, then 2. $(\neg \operatorname{Bival}(\beta) \vee \varphi(R \mid \beta)) \in \operatorname{sps} L \forall$.

Interpretability Method

- $\beta(x, y)$ is an arbitrary formula with just two free variables and which only involves unary predicate symbols (perhaps several)
- $\operatorname{Bival}(\beta)$ is the sentence $\forall x \forall y(\beta(x, y) \vee \neg \beta(x, y))$.
- φ is a classical sentence (i.e., it only involves $\forall, \exists, \neg, \wedge, \vee$) which only uses a binary predicate symbol R.
- $\varphi(R \mid \beta)$ is the result of replacing all $R x y$ with $\beta(x, y)$.

Lemma (A Uniform Statement on β 's)

(1) If $\emptyset \models_{\text {fin }} \varphi$, then 2. $(\neg \operatorname{Bival}(\beta) \vee \varphi(R \mid \beta)) \in \operatorname{stL} \forall$.
(2) If $\emptyset \vDash \varphi$, then 2. $(\neg \operatorname{Bival}(\beta) \vee \varphi(R \mid \beta)) \in \operatorname{sps} L \forall$.

Sketch of the Proof: Given any fuzzy A-structure M such that $\llbracket \beta(a, b) \rrbracket^{M}$ is never 0.5 , then take the classical structure $M / 2$ by

$$
\begin{aligned}
& \text { - } R(a, b)=1 \text {, if } \llbracket \beta(a, b) \rrbracket^{M}>0.5 \\
& \text { - } R(a, b)=0 \text {, if } \llbracket \beta(a, b) \rrbracket^{M}<0.5
\end{aligned}
$$

Interpretability Method

- $\beta(x, y)$ is an arbitrary formula with just two free variables and which only involves unary predicate symbols (perhaps several)
- $\operatorname{Bival}(\beta)$ is the sentence $\forall x \forall y(\beta(x, y) \vee \neg \beta(x, y))$.
- φ is a classical sentence (i.e., it only involves $\forall, \exists, \neg, \wedge, \vee$) which only uses a binary predicate symbol R.
- $\varphi(R \mid \beta)$ is the result of replacing all $R x y$ with $\beta(x, y)$.

Lemma (A Uniform Statement on β 's)

(1) If $\emptyset \models_{\text {fin }} \varphi$, then 2. $(\neg \operatorname{Bival}(\beta) \vee \varphi(R \mid \beta)) \in \operatorname{stL} \forall$.
(2) If $\emptyset \vDash \varphi$, then 2. $(\neg \operatorname{Bival}(\beta) \vee \varphi(R \mid \beta)) \in \operatorname{sps} L \forall$. [$\in \operatorname{spsMTL} \forall]$

Sketch of the Proof: Given any fuzzy A-structure M such that $\llbracket \beta(a, b) \rrbracket^{M}$ is never 0.5 , then take the classical structure $M / 2$ by

$$
\begin{aligned}
& \text { - } R(a, b)=1 \text {, if } \llbracket \beta(a, b) \rrbracket^{M}>0.5 \\
& \text { - } R(a, b)=0 \text {, if } \llbracket \beta(a, b) \rrbracket^{M}<0.5
\end{aligned}
$$

FUZZY STRUCTURE
(e) $P(e)=0.2$

$$
P(d)=1 \quad d
$$

$$
c \quad p(c)=0.4
$$

(a) $P(a)=0.75$

FUZZy STRUCTURE
(e)

$$
\begin{aligned}
& P(e)=0.2 \\
& P(d)=1
\end{aligned}
$$

$$
c P(c)=0.4
$$

$$
p(b)=0.25
$$

(a) $P(a)=0.75$

TWO LINEAR ORDERS
$R_{1} x y \Leftrightarrow P(x) \leqslant P(y)$
Hence, $e<b<c<a<d$

FUZZy STRUCTURE
(e)

$$
\begin{aligned}
& P(e)=0.2 \\
& P(d)=1
\end{aligned}
$$

$$
\begin{aligned}
& p(c)=0.4 \\
& p(b)=0.25
\end{aligned}
$$

TWO LINEAR ORDERS
$R_{1} x y \Leftrightarrow P(x) \leqslant P(y)$
Hence, $e<b<c<a<d$

$$
\begin{aligned}
R_{2} x y \Leftrightarrow a\left\{\begin{array}{l}
x=\min _{1} \\
P(x)-P(\text { med } x) \leqslant \\
\\
\\
\quad P P(y)-P(\text { med, } y)
\end{array}\right. \\
\text { Hence, } e<b<c<d<a
\end{aligned}
$$

(a) $P(a)=0.75$
LINEAR ORDER R

FUZZY STRUCTURE: $P: 0 \longmapsto 0.5+\varepsilon$ $1 \longmapsto 0.7$

 $3 \longmapsto 0.9$

FUZZY STRUCTURE:

$$
\begin{array}{rl}
P: & 0 \longmapsto 0 \\
1 & \longmapsto .5+\varepsilon \\
2 \longmapsto 0 & 0.8 \\
3 \longmapsto 0.9
\end{array}
$$

$$
\begin{aligned}
R \times y & \Longleftrightarrow\left(\forall x P_{x}\right) \odot\left(P_{x} \rightarrow P_{y}\right)>0.5 \\
7 R x y & \Longleftrightarrow\left(\forall x P_{x}\right) \odot\left(P_{x}+P_{y}\right)<0.5
\end{aligned}
$$

- Take now $\beta(x, y):=(\forall x P x) \odot(P x \rightarrow P y)$.
- Take now $\beta(x, y):=(\forall x P x) \odot(P x \rightarrow P y)$.

Theorem

Let Φ_{10} be the first-order sentence (with a binary predicate symbol R) axiomatizing the theory of (classical) linear orders. Then,

$$
\Phi_{10} \models_{\text {fin }} \varphi \quad \text { iff } \quad \text { 2. }\left(\neg \operatorname{Bival}(\beta) \vee\left(\neg \Phi_{10} \vee \varphi\right)(R \mid \beta)\right) \in \operatorname{stL} \forall .
$$

- Take now $\beta(x, y):=(\forall x P x) \odot(P x \rightarrow P y)$.

Theorem

Let Φ_{10} be the first-order sentence (with a binary predicate symbol R) axiomatizing the theory of (classical) linear orders. Then,

$$
\Phi_{10} \models_{\text {fin }} \varphi \quad \text { iff } \quad \text { 2. }\left(\neg \operatorname{Bival}(\beta) \vee\left(\neg \Phi_{10} \vee \varphi\right)(R \mid \beta)\right) \in \operatorname{stL} \forall .
$$

The same theorem holds if we use

- $\beta^{\prime}(x, y):=(\forall x P x) \odot(P x \leftrightarrow P y)$, and
- the sentence $\Phi_{e q}$ axiomatizing the theory of one equivalence relation.

FUZZY STRUCTURE

$$
\begin{aligned}
& P_{1}: 0 \longmapsto 0.5+\varepsilon \\
& 1 \longmapsto 0.7 \\
& 2 \longmapsto 0.8 \\
& 3 \longmapsto 0.9 \\
& P_{2}: \longmapsto \\
& 0 \longmapsto 0.5+\varepsilon \\
& 2 \longmapsto 0.7 \\
& 1 \longmapsto 0.8 \\
& 0.9
\end{aligned}
$$

FUZZY STRUCTURE

2 LINEAR ORDERS

$$
R_{1}: 0<1<2<3
$$

$$
R_{2}: 3<0<2<1
$$

$$
\begin{aligned}
R_{1} x y & \Leftrightarrow\left(\forall x p_{1} x\right) \odot\left(p_{1} x \rightarrow P_{1} y\right)>0.5 \\
7 R_{1} x y & \Leftrightarrow\left(\forall x P_{1} x\right) \odot\left(P_{1} x \rightarrow P_{1} y\right)<0.5 \\
R_{2} x y & \Leftrightarrow\left(\forall x P_{2} x\right) \odot\left(p_{2} x \rightarrow p_{2 y} y\right)>0.5 \\
\neg R_{2} x y & \Leftrightarrow\left(\forall x P_{2} x\right) \odot\left(P_{2} x \rightarrow \rho_{2} y\right)<0.5
\end{aligned}
$$

- $\beta_{1}(x, y):=\left(\forall x P_{1} x\right) \odot\left(P_{1} x \rightarrow P_{1} y\right)$.
- $\beta_{1}(x, y):=\left(\forall x P_{1} x\right) \odot\left(P_{1} x \rightarrow P_{1} y\right)$.
- $\beta_{2}(x, y):=\left(\forall x P_{2} x\right) \odot\left(P_{2} x \rightarrow P_{2} y\right)$.
- $\beta_{1}(x, y):=\left(\forall x P_{1} x\right) \odot\left(P_{1} x \rightarrow P_{1} y\right)$.
- $\beta_{2}(x, y):=\left(\forall x P_{2} x\right) \odot\left(P_{2} x \rightarrow P_{2} y\right)$.

Theorem

Let Φ_{210} be the first-order sentence (with binary predicate symbols R_{1} and R_{2}) axiomatizing the theory of two (classical) linear orders. Then,

- $\Phi_{2 l o} \models_{\text {fin }} \varphi$, iff
- 2. $\left(\neg \operatorname{Bival}\left(\beta_{1}\right) \vee \neg \operatorname{Bival}\left(\beta_{2}\right) \vee\left(\neg \Phi_{2 / \circ} \vee \varphi\right)\left(R_{1}\left|\beta_{1}, R_{2}\right| \beta_{2}\right)\right) \in \operatorname{stL} \forall$.
- $\beta_{1}(x, y):=\left(\forall x P_{1} x\right) \odot\left(P_{1} x \rightarrow P_{1} y\right)$.
- $\beta_{2}(x, y):=\left(\forall x P_{2} x\right) \odot\left(P_{2} x \rightarrow P_{2} y\right)$.

Theorem

Let Φ_{210} be the first-order sentence (with binary predicate symbols R_{1} and R_{2}) axiomatizing the theory of two (classical) linear orders. Then,

- $\Phi_{210} \models_{\text {fin }} \varphi$, iff
- 2. $\left(\neg \operatorname{Bival}\left(\beta_{1}\right) \vee \neg \operatorname{Bival}\left(\beta_{2}\right) \vee\left(\neg \Phi_{2 / \circ} \vee \varphi\right)\left(R_{1}\left|\beta_{1}, R_{2}\right| \beta_{2}\right)\right) \in s t L \forall$.

Corollary

Monadic Predicate standard Lukasiewicz Logic with two unary predicate symbols is undecidable.

2 LINEAR ORDERS
 $R_{1}: 0<1<2<3$
 $R_{2}: 0<3<2<1$

 1

$$
\begin{aligned}
& \text { FUZZY } \operatorname{STRUCTURE~} \\
& \left\lvert\, \begin{aligned}
P_{1}: 0 & \mapsto 0.5+\varepsilon \\
1 & \mapsto 0 \\
2 & \mapsto 0.85 \\
3 & \mapsto 0.95
\end{aligned}\right.
\end{aligned}
$$

- $\beta_{1}(x, y):=(\forall x P x) \odot(P x \rightarrow P y)$
- $\operatorname{pred}_{1}(x, y):=$
$\left(R_{1} y x \wedge \forall z R_{1} x z\right) \vee\left(R_{1} y x \wedge \neg R_{1} x y \wedge \forall z\left(R_{1} z y \vee R_{1} x z\right)\right)$
[this defines a total function on finite linear orders]
- $\operatorname{pred}_{\beta_{1}}(x, y):=$
$\left(\beta_{1} y x \wedge \forall z \beta_{1} x z\right) \vee\left(\beta_{1} y x \wedge \neg \beta_{1} x y \wedge \forall z\left(\beta_{1} z y \vee \beta_{1} x z\right)\right)$
- $\delta\left(x, x^{\prime}, y, y^{\prime}\right):=(\forall x P x) \odot\left(\left(P x \ominus P x^{\prime}\right) \rightarrow\left(P y \ominus P y^{\prime}\right)\right)$
- $\beta_{2}(x, y):=\exists x^{\prime} \exists y^{\prime}\left(\operatorname{pred}_{\beta_{1}}\left(x, x^{\prime}\right) \wedge \operatorname{pred}_{\beta_{1}}\left(y, y^{\prime}\right) \wedge \delta\left(x, x^{\prime}, y, y^{\prime}\right)\right)$
- $\beta_{1}(x, y):=(\forall x P x) \odot(P x \rightarrow P y)$
- $\operatorname{pred}_{1}(x, y):=$
$\left(R_{1} y x \wedge \forall z R_{1} x z\right) \vee\left(R_{1} y x \wedge \neg R_{1} x y \wedge \forall z\left(R_{1} z y \vee R_{1} x z\right)\right)$
[this defines a total function on finite linear orders]
- $\operatorname{pred}_{\beta_{1}}(x, y):=$
$\left(\beta_{1} y x \wedge \forall z \beta_{1} x z\right) \vee\left(\beta_{1} y x \wedge \neg \beta_{1} x y \wedge \forall z\left(\beta_{1} z y \vee \beta_{1} x z\right)\right)$
- $\delta\left(x, x^{\prime}, y, y^{\prime}\right):=(\forall x P x) \odot\left(\left(P x \ominus P x^{\prime}\right) \rightarrow\left(P y \ominus P y^{\prime}\right)\right)$
- $\beta_{2}(x, y):=\exists x^{\prime} \exists y^{\prime}\left(\operatorname{pred}_{\beta_{1}}\left(x, x^{\prime}\right) \wedge \operatorname{pred}_{\beta_{1}}\left(y, y^{\prime}\right) \wedge \delta\left(x, x^{\prime}, y, y^{\prime}\right)\right)$

Theorem

Let $\Phi_{2 / 0 * *}$ be the first-order sentence (with binary predicate symbols R_{1} and R_{2}) axiomatizing the theory of two (classical) linear orders with the same minimum element. Then,

- $\Phi_{210 *}=_{\text {fin }} \varphi$, iff
- 2. $\left(\neg \operatorname{Bival}\left(\beta_{1}\right) \vee \neg \operatorname{Bival}\left(\beta_{2}\right) \vee\left(\neg \Phi_{210} \vee \varphi\right)\left(R_{1}\left|\beta_{1}, R_{2}\right| \beta_{2}\right)\right) \in s t L \forall$.

Corollary

Monadic Predicate standard Łukasiewicz Logic with just one unary predicate symbol is undecidable. Indeed, four variables are enough for undecidability.

Corollary

Monadic Predicate standard Łukasiewicz Logic with just one unary predicate symbol is undecidable. Indeed, four variables are enough for undecidability.

Corollary

There is a sentence with only one unary predicate symbol P and at most four variables that is a standard Łukasiewicz tautology but not a general Łukasiewicz tautology.

Undecidability of General semantics

- Providing a characterization for the general semantics seems (due the safeness condition) much more difficult.

Undecidability of General semantics

- Providing a characterization for the general semantics seems (due the safeness condition) much more difficult.
- Fortunately, finitely inseparability of the theory of two linear orders (a particular case of "recursive inseparability") helps to avoid this difficulty.

Undecidability of General semantics

- Providing a characterization for the general semantics seems (due the safeness condition) much more difficult.
- Fortunately, finitely inseparability of the theory of two linear orders (a particular case of "recursive inseparability") helps to avoid this difficulty.

Theorem

Let ϑ be the vocabulary with one one unary predicate symbol. Then,

- spsL \forall is recursively inseparable from stL \forall. This means there is no recursive set X such that sps $\angle \subseteq X \subseteq$ st $\forall \forall$.
- spsMTL \forall is recursively inseparable from stL \forall.

LET US CONSIDER THE ORDER ω^{+}
w

LET US CONSIDER
THE ORDER ω^{+}
w

$$
\begin{aligned}
& \cdot \operatorname{Th}(w) \neq \operatorname{Th}(\text { FINL.0. }) \\
& L_{\text {e.g. }} \exists \mathrm{Jx}(\text { " } x \text { is a limit" })
\end{aligned}
$$

LET US CONSIDER
THE ORDER ω^{+}

$$
\begin{aligned}
& \text { wm } \quad \operatorname{Th}(w) \neq \operatorname{Th}(\text { FIN. O. }) \\
& \text { Leg. } \exists \mathrm{x} \text { ("x is a limit") } \\
& \text { Is THERE SOME } P: \omega^{+} \rightarrow[0,1]^{*} \\
& \text { SUCH THAT: } \\
& \text { 1) }\left\langle w^{+}, P\right\rangle \text { is SAFE } \\
& \text { 2) } x \leqslant y \Leftrightarrow\left(\forall x P_{x}\right) \odot\left(P_{x} \rightarrow P_{y}\right)>0.5 \\
& y<x \Leftrightarrow\left(\forall x P_{x}\right) \odot\left(P_{x} \rightarrow P_{y}\right)<0.5
\end{aligned}
$$

Let us suppose there is a positive answer to the previous question, and let us consider the sentence

$$
\psi:=\neg \operatorname{Bival}(\beta) \vee \neg \varphi(R \mid \beta),
$$

where

- φ is the sentence using only the binary predicate symbol R which says "it is a linear order with at least one limit point"
- $\beta(x, y):=(\forall x P x) \odot(P x \rightarrow P y)$,
- Bival $(\beta):=\forall x \forall y(\beta(x, y) \vee \neg \beta(x, y))$.

Then, $\psi \oplus \psi$ is a standard Łukasiewicz tautology that is not a general tautology.

Remark: We already know that $\psi \oplus \psi$ is a standard Łukasiewicz tautology that is not a supersound tautology.

A FUZZY STRUCTURE
w. $p(w)=1$

μ INFINITESIMAL

A FUZZy STRUCTURE
w. $p(w)=1$

IT HOLS
$x \leqslant y \Leftrightarrow\left(\forall x P_{x}\right) \cup\left(P_{x} \rightarrow P_{y}\right)>0.5$
$y<x \Leftrightarrow\left(\forall x P_{x}\right) \odot\left(P_{x} \rightarrow P_{y}\right)<0.5$
$\begin{array}{ll}2 & P(2)=3 / 4 \\ 1 & P(1)=2 / 3 \\ 0 & P(0)=1 / 2+\mu\end{array}$
μ Mwenitesinal

A FUZZy STRUCTURE

$$
\begin{aligned}
& \begin{array}{cl}
w(w)=1 & \begin{array}{l}
\text { IT sOLOS } \\
\vdots \leqslant y \Leftrightarrow\left(\forall x P_{x}\right) \odot\left(P_{x} \rightarrow P_{y}\right)>0.5 \\
\vdots \\
y<x \Leftrightarrow\left(\forall x P_{x}\right) \odot\left(P_{x} \rightarrow P_{y}\right)<0.5
\end{array}
\end{array} \\
& \begin{array}{ll}
2 & P(2)=3 / 4 \\
1 & P(1)=2 / 3 \\
0 & P(0)=1 / 2+\mu
\end{array} \\
& \text {-IS IT SAFE? } \\
& \text {-IS IT WITNESSED? }
\end{aligned}
$$

μ Mefinitesinal

Open Question

Can we give some sentence φ (using only a binary predicate symbol) such that

$$
\text { 2. }(\neg \operatorname{Bival}(\beta) \vee \varphi(R \mid \beta)) \in \operatorname{stL} \backslash \backslash \operatorname{gen} L \forall \text { ? }
$$

