
Non-associative
logics

Michal Botur

Introduction

Basic remarks

Non-associative
residuated
structures

Filters and
congruences

Non-associative Basic
logic algebras

Main theorem

Non-associative logics

Michal Botur

Department of Algebra and Geometry
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Hájek introduced basic logic BL as the logic of continuous
t-norms and their residua. Basic logic is a fuzzy logic, i.e. it
is complete with respect to linearly ordered models.
Algebraic semantics of BL is the variety of BL algebras. It
was proved by Cignoli, Esteva, Godo and Torrens that the
variety of BL algebras is generated just by the continuous
t-norms on the interval [0, 1] of reals.
The main goal of the talk is to present a non-associative
generalization of Hájek’s BL logic which has a class naBL of
non-associative BL algebras as its algebraic semantics.
Moreover, it is shown that naBL forms a variety generated
just by non-associative t-norms. Consequently, the
non-associative BL logic is the logic of non-associative
t-norms and their residua.
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BL-algebras

Definition
An algebra A = (A,∨,∧, ·,→, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉 is
said to be a BL-algebra (basic logic algebra) if

(BL1) (A,∨,∧, 0, 1) is a bounded lattice,

(BL2) (A, ·, 1) is a commutative monoid,

(BL3) any x , y , z ∈ A satisfy x · y ≤ z if and only if
x ≤ y → z (the so-called adjointness property).

(BL4) the divisibility identity (x · (x → y) = x ∧ y) and the
prelinearity identity (x → y ∨ y → x = 1) hold.
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Definition
A binary operation ’∗’ on the interval [0, 1] of reals is said to
be a t-norm if

(t1) ([0, 1], ∗, 1) is a commutative monoid,

(t2) ’∗’ is continuous in the usual sense,

(t3) If x , y , z ∈ [0, 1] are such that x ≤ y then x · z ≤ y · z .

We can define x →∗ y = max{a ∈ [0, 1] | a ∗ x ≤ y} for any
t-norm ’∗’ and moreover then the algebra
([0, 1],max,min, ∗,→∗, 0, 1) is a BL-algebra. The variety
(class) of all BL-algebras is generated just by a t-norms
(more precisely, by a BL-algebras derived form a t-norms).
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Non-associative residuated structures

Definition
An algebra A = (A,∨,∧, ·,→, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉 is
a non-associative residuated lattice if

(A1) (A,∨,∧, 0, 1) is a bounded lattice,

(A2) (A, ·, 1) is a commutative groupoid with the neutral
element 1,

(A3) Any x , y , z ∈ A satisfy x · y ≤ z if and only if
x ≤ y → z (so-called adjointness property).

Theorem
The class of all non-associative residuated lattices forms an
arithmetical variety. Moreover, the variety is 1-regular.
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Lemma
If A = (A,∨,∧, ·,→, 0, 1) is a non-associative residuated
lattice then for all x , y , x1, x2 ∈ A we have

(i) x ≤ y if and only if x → y = 1,

(ii) If x1 ≤ x2 then x1 · y ≤ x2 · y, x2 → y ≤ x1 → y and
y → x1 ≤ y → x2,

(iii) y · (x1 ∨ x2) = (y · x1) ∨ (y · x2),

(iv) y → (x1 ∧ x2) = (y → x1) ∧ (y → x2),

(v) (x1 ∨ x2)→ y = (x1 → y) ∧ (x2 → y),

(vi) (x → y) · x ≤ x , y,

(vii) (x → y)→ y ≥ x , y.
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In this section we describe congruence kernels (called filters)
in the variety of non-associative residuated lattices. In what
follows, we need the unary terms

αa
b(x) := (a · b)→ (a · (b · x)),

βab(x) := b → (a→ ((a · b) · x)).

The following lemma justifies their importance in
non-associtive residuated lattices.

Lemma
If A = (A,∨,∧, ·,→, 0, 1) is a non-associative residuated
lattice then for all a, b, c ∈ A we have:

(i) (a · b) · αa
b(x) ≤ a · (b · x),

(ii) a · (b · βab(x)) ≤ (a · b) · x .
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Definition
Let A = (A,∨,∧, ·,→, 0, 1) be a non-associative residuated
lattice. A non-empty subset F ⊆ A is called a filter of
A = (A,∨,∧, ·,→, 0, 1) if it satisfies:

(F1) If x ∈ F and y ∈ A such that x ≤ y then y ∈ F .

(F2) x · y ∈ F for all x , y ∈ F .

(F2) If a, b ∈ A and x ∈ F then αa
b(x), βab(x) ∈ F .

Theorem
Let A = (A,∨,∧, ·,→, 0, 1) be a non-associative residuated
lattice and let F be a filter. Then the relation

Θ(F ) = {〈x , y〉 ∈ A2 | x → y , y → x ∈ F}

is a congruence on A. Moreover, 1/Θ(F ) = F .
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Let us denote by < the sub-variety of the variety of
non-associative residuated lattices generated just by its
linearly ordered members and called it representable.
In what follows we need the following notation: for any
M ⊆ A denote M⊥ = {x ∈ A | x ∨ y = 1 (for all y ∈ M)},
the so-called polar of M. Moreover, we introduce the
identities

(x → y) ∨ αa
b(y → x) = 1 (α-prelinearity),

(x → y) ∨ βab(y → x) = 1 (β-prelinearity).
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Lemma
The following conditions are equivalent:

(i) A ∈ <
(ii) A is a non-associative residuated lattice with

α-prelinearity and β-prelinearity.

(iii) A is a non-associative residuated lattice with
prelinearity and satisfying the quasi-identities

x∨y = 1 =⇒ x∨αa
b(y) = 1 and x∨βab(y) = 1 (P)

(iv) A is non-associative residuated lattice with prelinearity
and, for all M ⊆ A, the set M⊥ is a filter of A.

(v) A is a subdirect product of linearly ordered
non-associative residuated lattices.
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Definition
A non-associative residuated lattice is an naBL algebra if it
satisfies divisibility, α-prelinearity and β-prelinearity.

Let us have a non-associative t-norm ∗ (commutative,
monotone and continuous binary operation on interval [0, 1]
of reals), then we can define

x →∗ y := max{a ∈ [0, 1] | a ∗ x ≤ z}.

Moreover, the structure ([0, 1],min,max, ∗,→∗, 0, 1) is an
naBL algebra. Let us denote the set of all naBL algebras
construed from a non-associative t-norms by naT . We can
state the main theorem.
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General finite embedding theorem

Theorem
Let A be an algebra and K be a class of the same type
algebras. If for any finite partial subalgebra X ⊂ A exist
B ∈ K and embedding f : X −→ B then A ∈ ISPU(K).

Proof.
Denote I = {X ; X ⊆ A and X is finite}. Then for any X ∈ I
there are AX ∈ K and an embedding ρX : A|X → AX.
Denote further U(X ) = {Y ; Y ∈ I and X ⊆ Y } and
V = {U(X ); X ∈ I}. The set V is nontrivial filter on P(I )
and thus there is an ultrafilter U of P(I ) such that V ⊆ U.
Finally we introduce the embedding

ρ : A→ (
∏
X∈I

AX )/U,

which is derived from partial embeddings ρX .
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General embedding theorem

Theorem
Let us have a class of the finite types algebras K. Then
A ∈ ISPU(K) if and only if any partial subalgebra X ⊆ A is
embeddable to some algebra from K.
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The class of all naBL algebras will be denoted by naBL and
denote by naT the set of all naBL algebras induced just by
nat-norms. In what follows we show that naT is the
generating class for the variety naBL.

Theorem
If A is a linearly ordered naBL algebra then A ∈ ISPU(naT ).

Proof. Let X ⊆ A be any finite set such that 0, 1 ∈ X . We
put X · X = {x · y | x ∈ X , y ∈ X}. Clearly, 1 ∈ X yields
the inequality X ⊆ X · X . Finiteness of X yields finiteness of
X · X and thus we may assume that X · X = {x0, · · · , xn}
and X = {y0, · · · , ym} where 0 = x0 < x1 < · · · < xn = 1
and 0 = y0 < y1 < · · · < ym = 1. Introduce the mapping
f : X · X −→ [0, 1] by f (xi ) = i

n . The mapping f is a lattice
embedding.
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We construct a nat-norm ’∗’ which is a hyperbolic
paraboloid on every interval [yi , yi+1]× [yj , yj+1] incident
with the points
〈f (yi ), f (yj), f (yi · yj)〉,
〈f (yi+1), f (yj), f (yi+1 · yj)〉,
〈f (yi ), f (yj+1), f (yi · yj+1)〉 and
〈f (yi+1), f (yj+1), f (yi+1 · yj+1)〉.
Finally we prove that f : X → [0, 1] is an embedding to the
naBL algebra induced by ’∗’. General finite embedding
theorem finished the proof.
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Corollaries

Moreover, the main theorem has some important corollaries:

Corollary

naBL = IPSSPU(naT ).

Denoting for a class X of algebras of the same type V(X )
the variety generated by X and QV(X ) the quasivariety
generated by X , we have

Corollary

naBL = V(naT ) = QV(naT ).
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