The variety generated by all the ordinal sums of perfect MV-chains

Matteo Bianchi
matteo.bianchi@unimi.it

Basic Logic

The formulas of BL are constructed by starting from the set of connectives $\{\&, \rightarrow, \perp\}$, as follows

$$
\varphi \& \psi, \quad \varphi \rightarrow \psi, \quad \perp
$$

Basic Logic

The formulas of BL are constructed by starting from the set of connectives $\{\&, \rightarrow, \perp\}$, as follows

$$
\varphi \& \psi, \quad \varphi \rightarrow \psi, \quad \perp
$$

Derived connectives:

$$
\begin{aligned}
\varphi \wedge \psi & :=\varphi \&(\varphi \rightarrow \psi) \\
\neg \varphi & :=\varphi \rightarrow \perp \\
\varphi \vee \psi & :=((\varphi \rightarrow \psi) \rightarrow \psi) \wedge((\psi \rightarrow \varphi) \rightarrow \varphi) \\
\varphi \leftrightarrow \psi & :=(\varphi \rightarrow \psi) \&(\psi \rightarrow \varphi) \\
\varphi \curlyvee \psi & :=\neg(\neg \varphi \& \neg \psi) \\
\top & :=\neg \perp
\end{aligned}
$$

Axiomatization of BL

$B L$ is axiomatized as follows
(A1)

$$
(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))
$$

(A2)

$$
(\varphi \& \psi) \rightarrow \varphi
$$

(A3)
$(\varphi \& \psi) \rightarrow(\psi \& \varphi)$
(A4)
(A5a)

$$
(\varphi \&(\varphi \rightarrow \psi)) \rightarrow(\psi \&(\psi \rightarrow \varphi))
$$

(A5b)

$$
(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \& \psi) \rightarrow \chi)
$$

$$
((\varphi \& \psi) \rightarrow \chi) \rightarrow(\varphi \rightarrow(\psi \rightarrow \chi))
$$

(A6)

$$
((\varphi \rightarrow \psi) \rightarrow \chi) \rightarrow(((\psi \rightarrow \varphi) \rightarrow \chi) \rightarrow \chi)
$$

(A7)

$$
\perp \rightarrow \varphi
$$

As an inference rule, we have modus ponens
(MP)

$$
\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}
$$

Some axiomatic extensions of BL

- Łukasiewicz logic, $Ł$ ([ŁT30]), is obtained from BL with

$$
\neg \neg \varphi \rightarrow \varphi
$$

Some axiomatic extensions of BL

- Łukasiewicz logic, $Ł$ ($\lfloor\mathrm{ŁT} 30]$), is obtained from BL with

$$
\neg \neg \varphi \rightarrow \varphi
$$

- $Ł_{\text {Chang }}$ is obtained from $Ł$ by adding

$$
2\left(\varphi^{2}\right) \leftrightarrow(2 \varphi)^{2},
$$

where 2φ means $\varphi \curlyvee \varphi$.

Some axiomatic extensions of BL

- Łukasiewicz logic, $Ł$ ($\lfloor\mathrm{ŁT} 30]$), is obtained from BL with

$$
\neg \neg \varphi \rightarrow \varphi
$$

- $Ł_{\text {Chang }}$ is obtained from $Ł$ by adding

$$
2\left(\varphi^{2}\right) \leftrightarrow(2 \varphi)^{2},
$$

where 2φ means $\varphi \curlyvee \varphi$.

- Gödel logic is obtained from BL by adding

$$
\varphi \rightarrow(\varphi \& \varphi)
$$

Some axiomatic extensions of BL

- Łukasiewicz logic, $Ł$ ($\lfloor T 30]$), is obtained from BL with

$$
\neg \neg \varphi \rightarrow \varphi
$$

- $Ł_{\text {Chang }}$ is obtained from $Ł$ by adding

$$
2\left(\varphi^{2}\right) \leftrightarrow(2 \varphi)^{2},
$$

where 2φ means $\varphi \curlyvee \varphi$.

- Gödel logic is obtained from BL by adding

$$
\varphi \rightarrow(\varphi \& \varphi)
$$

- Product logic is obtained from BL by adding

$$
\neg \varphi \vee((\varphi \rightarrow(\varphi \& \psi)) \rightarrow \psi)
$$

BL-algebras

A $B L$-algebra is an algebraic structure of the form $\langle A, \sqcap, \sqcup, *, \Rightarrow, 0,1\rangle$ such that

- $\langle A, \sqcap, \sqcup, 0,1\rangle$ is a bounded lattice

BL-algebras

A $B L$-algebra is an algebraic structure of the form $\langle A, \sqcap, \sqcup, *, \Rightarrow, 0,1\rangle$ such that

- $\langle A, \sqcap, \sqcup, 0,1\rangle$ is a bounded lattice
- $\langle A, *, 1\rangle$ is a commutative monoid

BL-algebras

A $B L$-algebra is an algebraic structure of the form $\langle A, \sqcap, \sqcup, *, \Rightarrow, 0,1\rangle$ such that

- $\langle A, \sqcap, \sqcup, 0,1\rangle$ is a bounded lattice
- $\langle A, *, 1\rangle$ is a commutative monoid
- $\langle *, \Rightarrow\rangle$ form a residuated pair, that is

$$
z * x \leq y \quad \text { iff } \quad z \leq x \Rightarrow y \quad(x \Rightarrow y=\max \{z: z * x \leq y\})
$$

BL-algebras

A $B L$-algebra is an algebraic structure of the form $\langle A, \sqcap, \sqcup, *, \Rightarrow, 0,1\rangle$ such that

- $\langle A, \sqcap, \sqcup, 0,1\rangle$ is a bounded lattice
- $\langle A, *, 1\rangle$ is a commutative monoid
- $\langle *, \Rightarrow\rangle$ form a residuated pair, that is

$$
z * x \leq y \quad \text { iff } \quad z \leq x \Rightarrow y \quad(x \Rightarrow y=\max \{z: z * x \leq y\})
$$

- The following equations hold
(prelinearity)
(divisibility)

$$
(x \Rightarrow y) \sqcup(y \Rightarrow x)=1
$$

$$
x \sqcap y=x *(x \Rightarrow y)
$$

BL-algebras

A $B L$-algebra is an algebraic structure of the form $\langle A, \sqcap, \sqcup, *, \Rightarrow, 0,1\rangle$ such that

- $\langle A, \sqcap, \sqcup, 0,1\rangle$ is a bounded lattice
- $\langle A, *, 1\rangle$ is a commutative monoid
- $\langle *, \Rightarrow\rangle$ form a residuated pair, that is

$$
z * x \leq y \quad \text { iff } \quad z \leq x \Rightarrow y \quad(x \Rightarrow y=\max \{z: z * x \leq y\})
$$

- The following equations hold
(prelinearity)
(divisibility)

$$
(x \Rightarrow y) \sqcup(y \Rightarrow x)=1
$$

$$
x \sqcap y=x *(x \Rightarrow y)
$$

- Some derived operations:

$$
\begin{aligned}
\sim x & :=x \Rightarrow 0 \\
x \oplus y & :=\sim(\sim x * \sim y)
\end{aligned}
$$

Standard MV, Gödel and Product algebras

They are BL-algebras of the form $\langle[0,1], *, \Rightarrow, \min , \max , 0,1\rangle$.

- Standard MV-algebra is denoted by $[0,1]_{\star}$ and its operations are:

$$
x * y=\max (0, x+y-1) \quad x \Rightarrow y=\min (1,1-x+y) \quad \sim x=1-x
$$

Standard MV, Gödel and Product algebras

They are BL-algebras of the form $\langle[0,1], *, \Rightarrow, \min , \max , 0,1\rangle$.

- Standard MV-algebra is denoted by $[0,1]_{\star}$ and its operations are:

$$
x * y=\max (0, x+y-1) \quad x \Rightarrow y=\min (1,1-x+y) \quad \sim x=1-x
$$

- Standard Gödel-algebra is denoted by $[0,1]_{\mathrm{G}}$ and its operations are:

$$
x * y=\min (x, y) \quad x \Rightarrow y=\left\{\begin{array}{ll}
1 & \text { if } x \leq y \\
y & \text { Otherwise }
\end{array} \quad \sim x= \begin{cases}0 & \text { if } x>0 \\
1 & \text { Otherwise }\end{cases}\right.
$$

Standard MV, Gödel and Product algebras

They are BL-algebras of the form $\langle[0,1], *, \Rightarrow, \min , \max , 0,1\rangle$.

- Standard MV-algebra is denoted by $[0,1]_{\star}$ and its operations are:

$$
x * y=\max (0, x+y-1) \quad x \Rightarrow y=\min (1,1-x+y) \quad \sim x=1-x
$$

- Standard Gödel-algebra is denoted by $[0,1]_{\mathrm{G}}$ and its operations are:

$$
x * y=\min (x, y) \quad x \Rightarrow y=\left\{\begin{array}{ll}
1 & \text { if } x \leq y \\
y & \text { Otherwise }
\end{array} \quad \sim x= \begin{cases}0 & \text { if } x>0 \\
1 & \text { Otherwise }\end{cases}\right.
$$

- Standard Product-algebra is denoted by $[0,1]_{\mathrm{n}}$ and its operations are:

$$
x * y=x \cdot y \quad x \Rightarrow y=\left\{\begin{array}{ll}
1 & \text { if } x \leq y \\
\frac{y}{x} & \text { Otherwise }
\end{array} \quad \sim x= \begin{cases}0 & \text { if } x>0 \\
1 & \text { Otherwise }\end{cases}\right.
$$

Hoops

Definition ([Fer92, BF00])

A hoop is a structure $\mathcal{A}=\langle A, *, \Rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$
x \Rightarrow x=1, \quad x \Rightarrow(y \Rightarrow z)=(x * y) \Rightarrow z \quad \text { and } \quad x *(x \Rightarrow y)=y *(y \Rightarrow x) .
$$

Hoops

Definition ([Fer92, BF00])

A hoop is a structure $\mathcal{A}=\langle A, *, \Rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$
x \Rightarrow x=1, \quad x \Rightarrow(y \Rightarrow z)=(x * y) \Rightarrow z \quad \text { and } \quad x *(x \Rightarrow y)=y *(y \Rightarrow x)
$$

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

Hoops

Definition ([Fer92, BF00])

A hoop is a structure $\mathcal{A}=\langle A, *, \Rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$
x \Rightarrow x=1, \quad x \Rightarrow(y \Rightarrow z)=(x * y) \Rightarrow z \quad \text { and } \quad x *(x \Rightarrow y)=y *(y \Rightarrow x)
$$

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

Proposition ([Fer92, BF00, AFM07])

Hoops

Definition ([Fer92, BF00])

A hoop is a structure $\mathcal{A}=\langle A, *, \Rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$
x \Rightarrow x=1, \quad x \Rightarrow(y \Rightarrow z)=(x * y) \Rightarrow z \quad \text { and } \quad x *(x \Rightarrow y)=y *(y \Rightarrow x)
$$

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

Proposition ([Fer92, BF00, AFM07])

- A hoop is Wajsberg iff it satisfies the equation $(x \Rightarrow y) \Rightarrow y=(y \Rightarrow x) \Rightarrow x$.

Hoops

Definition ([Fer92, BF00])

A hoop is a structure $\mathcal{A}=\langle A, *, \Rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$
x \Rightarrow x=1, \quad x \Rightarrow(y \Rightarrow z)=(x * y) \Rightarrow z \quad \text { and } \quad x *(x \Rightarrow y)=y *(y \Rightarrow x)
$$

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

Proposition ([Fer92, BF00, AFM07])

- A hoop is Wajsberg iff it satisfies the equation $(x \Rightarrow y) \Rightarrow y=(y \Rightarrow x) \Rightarrow x$.
- A hoop is cancellative iff it satisfies the equation $x=y \Rightarrow(x * y)$.

4ロ・4師

Hoops

Definition ([Fer92, BF00])

A hoop is a structure $\mathcal{A}=\langle A, *, \Rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$
x \Rightarrow x=1, \quad x \Rightarrow(y \Rightarrow z)=(x * y) \Rightarrow z \quad \text { and } \quad x *(x \Rightarrow y)=y *(y \Rightarrow x)
$$

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

Proposition ([Fer92, BF00, AFM07])

- A hoop is Wajsberg iff it satisfies the equation $(x \Rightarrow y) \Rightarrow y=(y \Rightarrow x) \Rightarrow x$.
- A hoop is cancellative iff it satisfies the equation $x=y \Rightarrow(x * y)$.
- Totally ordered cancellative hoops coincide with unbounded totally ordered Wajsberg hoops, whereas bounded Wajsberg hoops coincide with (the 0-free reducts of) MV-algebras.

Perfect MV-algebras. . .

Definition ([BDL93])

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord (x) we mean the least (positive) natural n such that $x^{n}=0$. If there is no such n, then we set $\operatorname{ord}(x)=\infty$.

Perfect MV-algebras. . .

Definition ([BDL93])

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with $\operatorname{ord}(x)$ we mean the least (positive) natural n such that $x^{n}=0$. If there is no such n, then we set $\operatorname{ord}(x)=\infty$.

- An MV-algebra is called local if for every element x it holds that $\operatorname{ord}(x)<\infty$ or $\operatorname{crd}(\sim x)<\infty$.

Perfect MV-algebras. . .

Definition ([BDL93])

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord (x) we mean the least (positive) natural n such that $x^{n}=0$. If there is no such n, then we set $\operatorname{ord}(x)=\infty$.

- An MV-algebra is called local if for every element x it holds that $\operatorname{ord}(x)<\infty$ or $\operatorname{ord}(\sim x)<\infty$.
- An MV-algebra is called perfect if for every element x it holds that $\operatorname{ord}(x)<\infty$ iff $\operatorname{ord}(\sim x)=\infty$.

Perfect MV-algebras. . .

Definition ([BDL93])

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with $\operatorname{ord}(x)$ we mean the least (positive) natural n such that $x^{n}=0$. If there is no such n, then we set $\operatorname{ord}(x)=\infty$.

- An MV-algebra is called local if for every element x it holds that $\operatorname{ord}(x)<\infty$ or $\operatorname{ord}(\sim x)<\infty$.
- An MV-algebra is called perfect if for every element x it holds that $\operatorname{ord}(x)<\infty$ iff $\operatorname{ord}(\sim x)=\infty$.

Theorem ([BDL93])

Every MV-chain is local.

Perfect MV-algebras. . .

Definition ([BDL93])

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord (x) we mean the least (positive) natural n such that $x^{n}=0$. If there is no such n, then we set $\operatorname{ord}(x)=\infty$.

- An MV-algebra is called local if for every element x it holds that $\operatorname{ord}(x)<\infty$ or $\operatorname{ord}(\sim x)<\infty$.
- An MV-algebra is called perfect if for every element x it holds that $\operatorname{ord}(x)<\infty$ iff $\operatorname{ord}(\sim x)=\infty$.

Theorem ([BDL93])

Every MV-chain is local.

Theorem ([NEG05, theorem 9])

Let \mathcal{A} be an MV-algebra. The followings are equivalent:

Perfect MV-algebras. . .

Definition ([BDL93])

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord (x) we mean the least (positive) natural n such that $x^{n}=0$. If there is no such n, then we set $\operatorname{ord}(x)=\infty$.

- An MV-algebra is called local if for every element x it holds that $\operatorname{ord}(x)<\infty$ or $\operatorname{ord}(\sim x)<\infty$.
- An MV-algebra is called perfect if for every element x it holds that $\operatorname{ord}(x)<\infty$ iff $\operatorname{ord}(\sim x)=\infty$.

Theorem ([BDL93])

Every MV-chain is local.

Theorem ([NEG05, theorem 9])

Let \mathcal{A} be an MV-algebra. The followings are equivalent:

- \mathcal{A} is a perfect $M V$-algebra.

Perfect MV-algebras. . .

Definition ([BDL93])

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord (x) we mean the least (positive) natural n such that $x^{n}=0$. If there is no such n, then we set $\operatorname{ord}(x)=\infty$.

- An MV-algebra is called local if for every element x it holds that $\operatorname{ord}(x)<\infty$ or $\operatorname{ord}(\sim x)<\infty$.
- An MV-algebra is called perfect if for every element x it holds that $\operatorname{ord}(x)<\infty$ iff $\operatorname{ord}(\sim x)=\infty$.

Theorem ([BDL93])

Every MV-chain is local.

Theorem ([NEG05, theorem 9])

Let \mathcal{A} be an MV-algebra. The followings are equivalent:

- \mathcal{A} is a perfect $M V$-algebra.
- \mathcal{A} is isomorphic to the disconneded dotition of a cancellative hoop.

. . . and the variety generated from them

Definition (Chang's MV-algebra, [Cha58])

It is defined as $C=\left\langle\left\{a_{n}: n \in \mathbb{N}\right\} \cup\left\{b_{n}: n \in \mathbb{N}\right\}, *, \Rightarrow, \sqcap, \sqcup, b_{0}, a_{0}\right\rangle$. It holds that $a_{0}>a_{1}>a_{2} \ldots$ and $b_{0}<b_{1}<b_{2} \ldots$ and $a_{i}>b_{j}$ for every $i, j \in \mathbb{N}$.
The operation $*$ is defined as follows, for each $n, m \in \mathbb{N}$:

$$
b_{n} * b_{m}=b_{0}, b_{n} * a_{m}=b_{\max (0, n-m)}, a_{n} * a_{m}=a_{n+m} .
$$

Definition (Chang's MV-algebra, [Cha58])

It is defined as $C=\left\langle\left\{a_{n}: n \in \mathbb{N}\right\} \cup\left\{b_{n}: n \in \mathbb{N}\right\}, *, \Rightarrow, \Pi, \sqcup, b_{0}, a_{0}\right\rangle$.
It holds that $a_{0}>a_{1}>a_{2} \ldots$ and $b_{0}<b_{1}<b_{2} \ldots$ and $a_{i}>b_{j}$ for every $i, j \in \mathbb{N}$.
The operation $*$ is defined as follows, for each $n, m \in \mathbb{N}$:

$$
b_{n} * b_{m}=b_{0}, b_{n} * a_{m}=b_{\max (0, n-m)}, a_{n} * a_{m}=a_{n+m} .
$$

Theorem ([DL94])

. . . and the variety generated from them

Definition (Chang's MV-algebra, [Cha58])

It is defined as $C=\left\langle\left\{a_{n}: n \in \mathbb{N}\right\} \cup\left\{b_{n}: n \in \mathbb{N}\right\}, *, \Rightarrow, \sqcap, \sqcup, b_{0}, a_{0}\right\rangle$.
It holds that $a_{0}>a_{1}>a_{2} \ldots$ and $b_{0}<b_{1}<b_{2} \ldots$ and $a_{i}>b_{j}$ for every $i, j \in \mathbb{N}$.
The operation $*$ is defined as follows, for each $n, m \in \mathbb{N}$:

$$
b_{n} * b_{m}=b_{0}, b_{n} * a_{m}=b_{\max (0, n-m)}, a_{n} * a_{m}=a_{n+m} .
$$

Theorem ([DL94])

- $\mathbf{V}(C)=\mathbf{V}(\operatorname{Perfect}(M V))$,

. . . and the variety generated from them

Definition (Chang's MV-algebra, [Cha58])

It is defined as $C=\left\langle\left\{a_{n}: n \in \mathbb{N}\right\} \cup\left\{b_{n}: n \in \mathbb{N}\right\}, *, \Rightarrow, \sqcap, \sqcup, b_{0}, a_{0}\right\rangle$.
It holds that $a_{0}>a_{1}>a_{2} \ldots$ and $b_{0}<b_{1}<b_{2} \ldots$ and $a_{i}>b_{j}$ for every $i, j \in \mathbb{N}$.
The operation $*$ is defined as follows, for each $n, m \in \mathbb{N}$:

$$
b_{n} * b_{m}=b_{0}, b_{n} * a_{m}=b_{\max (0, n-m)}, a_{n} * a_{m}=a_{n+m}
$$

Theorem ([DL94])

- $\mathbf{V}(C)=\mathbf{V}(\operatorname{Perfect}(M V))$,

. . . and the variety generated from them

Definition (Chang's MV-algebra, [Cha58])

It is defined as $C=\left\langle\left\{a_{n}: n \in \mathbb{N}\right\} \cup\left\{b_{n}: n \in \mathbb{N}\right\}, *, \Rightarrow, \sqcap, \sqcup, b_{0}, a_{0}\right\rangle$.
It holds that $a_{0}>a_{1}>a_{2} \ldots$ and $b_{0}<b_{1}<b_{2} \ldots$ and $a_{i}>b_{j}$ for every $i, j \in \mathbb{N}$.
The operation $*$ is defined as follows, for each $n, m \in \mathbb{N}$:

$$
b_{n} * b_{m}=b_{0}, b_{n} * a_{m}=b_{\max (0, n-m)}, a_{n} * a_{m}=a_{n+m}
$$

```
Theorem ([DL94])
- \(\mathbf{V}(C)=\mathbf{V}(\operatorname{Perfect}(M V))\),
```


Theorem ([DL94])

An MV-algebra is in the variety $\mathbf{V}(C)$ iff it satisfies the equation $(2 x)^{2}=2\left(x^{2}\right)$.

. . . and the variety generated from them

Definition (Chang's MV-algebra, [Cha58])

It is defined as $C=\left\langle\left\{a_{n}: n \in \mathbb{N}\right\} \cup\left\{b_{n}: n \in \mathbb{N}\right\}, *, \Rightarrow, \sqcap, \sqcup, b_{0}, a_{0}\right\rangle$.
It holds that $a_{0}>a_{1}>a_{2} \ldots$ and $b_{0}<b_{1}<b_{2} \ldots$ and $a_{i}>b_{j}$ for every $i, j \in \mathbb{N}$.
The operation $*$ is defined as follows, for each $n, m \in \mathbb{N}$:

$$
b_{n} * b_{m}=b_{0}, b_{n} * a_{m}=b_{\max (0, n-m)}, a_{n} * a_{m}=a_{n+m} .
$$

Theorem ([DL94])

- $\mathbf{V}(C)=\mathbf{V}(\operatorname{Perfect}(M V))$,

Theorem ([DL94])

An MV-algebra is in the variety $\mathbf{V}(C)$ iff it satisfies the equation $(2 x)^{2}=2\left(x^{2}\right)$.
As shown in [BDG07], the logic correspondent to this variety is axiomatized as $Ł$ plus $(2 \varphi)^{2} \leftrightarrow 2\left(\varphi^{2}\right)$: we will call it $\hbar_{\text {chang }}$.

A new disjunction connective - 1

Consider the following connective

$$
\varphi \underline{\vee} \psi:=((\varphi \rightarrow(\varphi \& \psi)) \rightarrow \psi) \wedge((\psi \rightarrow(\varphi \& \psi)) \rightarrow \varphi)
$$

Call \uplus the algebraic operation, over a BL-algebra, corresponding to $\underline{\vee}$; we have that

Lemma

In every MV-algebra the following equation holds

$$
x \uplus y=x \oplus y .
$$

A new disjunction connective - 1

Consider the following connective

$$
\varphi \underline{\vee} \psi:=((\varphi \rightarrow(\varphi \& \psi)) \rightarrow \psi) \wedge((\psi \rightarrow(\varphi \& \psi)) \rightarrow \varphi)
$$

Call \uplus the algebraic operation, over a BL-algebra, corresponding to $\underline{\vee}$; we have that

Lemma

In every MV-algebra the following equation holds

$$
x \uplus y=x \oplus y .
$$

Corollary

In every MV-algebra the following equations are equivalent

$$
\begin{aligned}
(2 x)^{2} & =2\left(x^{2}\right) \\
(\overline{2} x)^{2} & =\overline{2}\left(x^{2}\right)
\end{aligned}
$$

Where $2 x:=x \oplus x$ and $\overline{2} x:=x \uplus x$.

A new disjunction connective - 2

Proposition

Let \mathcal{A} be a linearly ordered Wajsberg hoop. Then

A new disjunction connective - 2

Proposition

Let \mathcal{A} be a linearly ordered Wajsberg hoop. Then

- If \mathcal{A} is unbounded (i.e. a cancellative hoop), then $x \uplus y=1$, for every $x, y \in \mathcal{A}$.

A new disjunction connective - 2

Proposition

Let \mathcal{A} be a linearly ordered Wajsberg hoop. Then

- If \mathcal{A} is unbounded (i.e. a cancellative hoop), then $x \uplus y=1$, for every $x, y \in \mathcal{A}$.
- If \mathcal{A} is bounded, let a be its minimum. Then, by defining $\sim x:=x \Rightarrow a$ and $x \oplus y=\sim(\sim x * \sim y)$ we have that $x \oplus y=x \uplus y$, for every $x, y \in \mathcal{A}$

A new disjunction connective - 2

Proposition

Let \mathcal{A} be a linearly ordered Wajsberg hoop. Then

- If \mathcal{A} is unbounded (i.e. a cancellative hoop), then $x \uplus y=1$, for every $x, y \in \mathcal{A}$.
- If \mathcal{A} is bounded, let a be its minimum. Then, by defining $\sim x:=x \Rightarrow a$ and $x \oplus y=\sim(\sim x * \sim y)$ we have that $x \oplus y=x \uplus y$, for every $x, y \in \mathcal{A}$

Corollary

The equation $x \uplus y=1$ holds in every cancellative hoop.

A new disjunction connective - 3

Theorem ([AM03, theorem 3.7])

Every BL-chain is isomorphic to an ordinal sum whose first component is an MV-chain and the others are totally ordered Wajsberg hoops.

A new disjunction connective - 3

Theorem ([AM03, theorem 3.7])

Every BL-chain is isomorphic to an ordinal sum whose first component is an MV-chain and the others are totally ordered Wajsberg hoops.

Proposition

Let $\mathcal{A}=\bigoplus_{i \in I} \mathcal{A}_{i}$ be a BL-chain. Then

$$
x \uplus y= \begin{cases}x \oplus y, & \text { if } x, y \in \mathcal{A}_{i} \text { and } \mathcal{A}_{i} \text { is bounded } \\ 1, & \text { if } x, y \in \mathcal{A}_{i} \text { and } \mathcal{A}_{i} \text { is unbounded } \\ \max (x, y), & \text { otherwise } .\end{cases}
$$

for every $x, y \in \mathcal{A}$.

Pseudo-perfect Wajsberg hoops

Definition

We will call pseudo-perfect Wajsberg hoops those Wajsberg hoops satisfying the equation $(\overline{2} x)^{2}=\overline{2}\left(x^{2}\right)$.

Pseudo-perfect Wajsberg hoops

Definition

We will call pseudo-perfect Wajsberg hoops those Wajsberg hoops satisfying the equation $(\overline{2} x)^{2}=\overline{2}\left(x^{2}\right)$.

Theorem

Pseudo-perfect Wajsberg hoops

Definition

We will call pseudo-perfect Wajsberg hoops those Wajsberg hoops satisfying the equation $(\overline{2} x)^{2}=\overline{2}\left(x^{2}\right)$.

Theorem

- Every totally ordered pseudo-perfect Wajsberg hoop is a totally ordered cancellative hoop or (the 0 -free reduct of) a perfect MV-chain.

Pseudo-perfect Wajsberg hoops

Definition

We will call pseudo-perfect Wajsberg hoops those Wajsberg hoops satisfying the equation $(\overline{2} x)^{2}=\overline{2}\left(x^{2}\right)$.

Theorem

- Every totally ordered pseudo-perfect Wajsberg hoop is a totally ordered cancellative hoop or (the 0 -free reduct of) a perfect MV-chain.
- The variety of pseudo-perfect Waisberg hoops coincides with the class of the 0 -free subreducts of members of $\mathbf{V}(C)$.

Pseudo-perfect Wajsberg hoops

Definition

We will call pseudo-perfect Wajsberg hoops those Wajsberg hoops satisfying the equation $(\overline{2} x)^{2}=\overline{2}\left(x^{2}\right)$.

Theorem

- Every totally ordered pseudo-perfect Wajsberg hoop is a totally ordered cancellative hoop or (the 0-free reduct of) a perfect MV-chain.
- The variety of pseudo-perfect Wajsberg hoops coincides with the class of the 0 -free subreducts of members of $\mathbf{V}(C)$.

Theorem

Let $\mathbb{W H}, \mathbb{C H}, p s \mathbb{W H}$ be, respectively, the varieties of Wajsberg hoops, cancellative hoops, pseudo-perfect Wajsberg hoops. Then we have that

$$
\mathbb{C H} \subset p s \mathbb{W} H \subset \mathbb{W} H
$$

$\mathrm{BL}_{\text {Chang }}$ logic...

Definition

The logic $\mathrm{BL}_{\text {Chang }}$ is axiomatized as BL plus

$$
\overline{2}\left(\varphi^{2}\right) \leftrightarrow(\overline{2} \varphi)^{2} .
$$

$\mathrm{BL}_{\text {Chang }}$ logic...

Definition

The logic $\mathrm{BL}_{\text {Chang }}$ is axiomatized as BL plus

$$
\overline{2}\left(\varphi^{2}\right) \leftrightarrow(\overline{2} \varphi)^{2} .
$$

Theorem ([AM03, theorem 3.7])

Every BL-chain is isomorphic to an ordinal sum whose first component is an MV-chain and the others are totally ordered Wajsberg hoops.

$\mathrm{BL}_{\text {Chang }}$ logic...

Definition

The logic $\mathrm{BL}_{\text {Chang }}$ is axiomatized as BL plus

$$
\overline{2}\left(\varphi^{2}\right) \leftrightarrow(\overline{2} \varphi)^{2} .
$$

Theorem ([AM03, theorem 3.7])

Every BL-chain is isomorphic to an ordinal sum whose first component is an MV-chain and the others are totally ordered Wajsberg hoops.

Theorem

Every $B L_{\text {Chang-chain is isomorphic to an ordinal sum whose first component is a perfect }}$ MV-chain and the others are totally ordered pseudo-perfect Wajsberg hoops. It follows that every ordinal sum of perfect MV-chains is a BLChang-chain.

. . . and some results

Theorem

The variety of $B L_{\text {chang }}$-algebras contains the ones of product-algebras and Gödel-algebras: however it does not contain the variety of MV -algebras.

. . . and some results

Theorem

The variety of $B L_{\text {Chang }}$-algebras contains the ones of product-algebras and Gödel-algebras: however it does not contain the variety of MV -algebras.

Theorem

Every finite $B L_{\text {chang }}$-chain is an ordinal sum of a finite number of copies of the two elements boolean algebra. Hence the class of finite $B L_{\text {Chang-chains }}$ coincides with the one of finite Gödel chains.

. . . and some results

Theorem

The variety of $B L_{C h a n g-a l g e b r a s ~ c o n t a i n s ~ t h e ~ o n e s ~ o f ~ p r o d u c t-a l g e b r a s ~ a n d ~}^{\text {and }}$ Gödel-algebras: however it does not contain the variety of MV-algebras.

Theorem

Every finite $B L_{\text {Chang }}$-chain is an ordinal sum of a finite number of copies of the two elements boolean algebra. Hence the class of finite $B L_{\text {chang-chains coincides with the }}$ one of finite Gödel chains.

Corollary

The finite model property does not hold, for $B L_{\text {Chang }}$.

Relation with other connected varieties

- In contrast with MV-algebras, the equations $2\left(x^{2}\right)=(2 x)^{2}$ and $\overline{2}\left(x^{2}\right)=(\overline{2} x)^{2}$ are not equivalent, over BL-algebras.

Relation with other connected varieties

- In contrast with MV-algebras, the equations $2\left(x^{2}\right)=(2 x)^{2}$ and $\overline{2}\left(x^{2}\right)=(\overline{2} x)^{2}$ are not equivalent, over BL-algebras.
- In fact the variety P_{0} of BL-algebras satisfying $2\left(x^{2}\right)=(2 x)^{2}$ is studied in [DSE ${ }^{+} 02$] and corresponds to the variety generated by all the perfect BL-algebras (a BL-algebra \mathcal{A} is perfect if its largest MV-subalgebra is perfect).

Relation with other connected varieties

- In contrast with MV-algebras, the equations $2\left(x^{2}\right)=(2 x)^{2}$ and $\overline{2}\left(x^{2}\right)=(\overline{2} x)^{2}$ are not equivalent, over BL-algebras.
- In fact the variety P_{0} of BL-algebras satisfying $2\left(x^{2}\right)=(2 x)^{2}$ is studied in [DSE ${ }^{+} 02$] and corresponds to the variety generated by all the perfect BL-algebras (a BL-algebra \mathcal{A} is perfect if its largest MV-subalgebra is perfect).
- Which is the relation between P_{0} and the variety of $\mathrm{BL}_{\text {Chang }}$-algebras ?

Relation with other connected varieties

- In contrast with MV-algebras, the equations $2\left(x^{2}\right)=(2 x)^{2}$ and $\overline{2}\left(x^{2}\right)=(\overline{2} x)^{2}$ are not equivalent, over BL-algebras.
- In fact the variety P_{0} of BL-algebras satisfying $2\left(x^{2}\right)=(2 x)^{2}$ is studied in [DSE ${ }^{+} 02$] and corresponds to the variety generated by all the perfect BL-algebras (a BL-algebra \mathcal{A} is perfect if its largest MV-subalgebra is perfect).
- Which is the relation between P_{0} and the variety of $\mathrm{BL}_{\text {Chang }}$-algebras ?

The variety of $\mathrm{BL}_{\text {Chang }}$-algebras is strictly contained in P_{0} :

Relation with other connected varieties

- In contrast with MV-algebras, the equations $2\left(x^{2}\right)=(2 x)^{2}$ and $\overline{2}\left(x^{2}\right)=(\overline{2} x)^{2}$ are not equivalent, over BL-algebras.
- In fact the variety P_{0} of BL-algebras satisfying $2\left(x^{2}\right)=(2 x)^{2}$ is studied in [DSE ${ }^{+} 02$] and corresponds to the variety generated by all the perfect BL-algebras (a BL-algebra \mathcal{A} is perfect if its largest MV-subalgebra is perfect).
- Which is the relation between P_{0} and the variety of $\mathrm{BL}_{\text {Chang }}$-algebras ?

The variety of $\mathrm{BL}_{\text {Chang }}$-algebras is strictly contained in P_{0} :

- Every $\mathrm{BL}_{\text {Chang }}$-chain is a perfect BL-chain.

Relation with other connected varieties

- In contrast with MV-algebras, the equations $2\left(x^{2}\right)=(2 x)^{2}$ and $\overline{2}\left(x^{2}\right)=(\overline{2} x)^{2}$ are not equivalent, over BL-algebras.
- In fact the variety P_{0} of BL-algebras satisfying $2\left(x^{2}\right)=(2 x)^{2}$ is studied in [DSE ${ }^{+} 02$] and corresponds to the variety generated by all the perfect BL-algebras (a BL-algebra \mathcal{A} is perfect if its largest MV-subalgebra is perfect).
- Which is the relation between P_{0} and the variety of $B L_{\text {Chang }}$-algebras ?

The variety of $B L_{C h a n g}$-algebras is strictly contained in P_{0} :

- Every $\mathrm{BL}_{\text {Chang }}$-chain is a perfect $B L$-chain.
- There are perfect $B L$-chains that are not $B L_{\text {Chang }}$-chains: an example is given by $C \oplus[0,1]_{七}$.

Completeness

Theorem ([EGHM03])
reset

Completeness

Theorem ([EGHM03])

- Every totally ordered product chain is of the form $\mathbf{2} \oplus \mathcal{A}$, where \mathcal{A} is a cancellative hoop.

Completeness

Theorem ([EGHM03])

- Every totally ordered product chain is of the form $\mathbf{2} \oplus \mathcal{A}$, where \mathcal{A} is a cancellative hoop.
- $[0,1]_{\Pi} \simeq \mathbf{2} \oplus(0,1]_{c}$, with $(0,1]_{c}$ being the standard cancellative hoop (i.e. the 0 -free reduct of $[0,1]_{\square} \backslash\{0\}$).

Completeness

Theorem ([EGHM03])

- Every totally ordered product chain is of the form $\mathbf{2} \oplus \mathcal{A}$, where \mathcal{A} is a cancellative hoop.
- $[0,1]_{\Pi} \simeq \mathbf{2} \oplus(0,1]_{c}$, with $(0,1]_{c}$ being the standard cancellative hoop (i.e. the 0 -free reduct of $[0,1]_{\cap} \backslash\{0\}$).

Theorem ([CEG+09])

Let L be an axiomatic extension of $B L$ and \mathcal{A} be an L-chain. The following are equivalent

Completeness

Theorem ([EGHM03])

- Every totally ordered product chain is of the form $\mathbf{2} \oplus \mathcal{A}$, where \mathcal{A} is a cancellative hoop.
- $[0,1]_{\Pi} \simeq \mathbf{2} \oplus(0,1]_{c}$, with $(0,1]_{c}$ being the standard cancellative hoop (i.e. the 0 -free reduct of $[0,1]_{\cap} \backslash\{0\}$).

Theorem ([CEG+09])

Let L be an axiomatic extension of BL and \mathcal{A} be an L-chain. The following are equivalent

- L enjoys the finite strong completeness w.r.t. A.

Completeness

Theorem ([EGHM03])

- Every totally ordered product chain is of the form $\mathbf{2} \oplus \mathcal{A}$, where \mathcal{A} is a cancellative hoop.
- $[0,1]_{\Pi} \simeq \mathbf{2} \oplus(0,1]_{c}$, with $(0,1]_{c}$ being the standard cancellative hoop (i.e. the 0 -free reduct of $[0,1]_{\cap} \backslash\{0\}$).

Theorem ([CEG+ 09])

Let L be an axiomatic extension of BL and \mathcal{A} be an L-chain. The following are equivalent

- L enjoys the finite strong completeness w.r.t. A.
- Every countable L-chain is parially embodable into \mathcal{A}.

Completeness

Theorem ([EGHM03])

- Every totally ordered product chain is of the form $\mathbf{2} \oplus \mathcal{A}$, where \mathcal{A} is a cancellative hoop.
- $[0,1]_{\Pi} \simeq \mathbf{2} \oplus(0,1]_{C}$, with $(0,1]_{C}$ being the standard cancellative hoop (i.e. the 0 -free reduct of $[0,1]_{\square} \backslash\{0\}$).

Theorem ([CEG+09])

Let L be an axiomatic extension of $B L$ and \mathcal{A} be an L-chain. The following are equivalent

- Lenjoys the finite strong completeness w.r.t. \mathcal{A}.
- Every countable L-chain is partially embeddable into \mathcal{A}.

Proposition

Product logic is finitely strongly complete w.r.t. $[0,1]_{\mathrm{n}}([E G H 96])$. As a consequence every countable totally ordered cancellative hoop partially embeds into (0,1$]_{c}$.

Completeness $-Ł_{\text {Chang }}$

Theorem

Every countable perfect MV-chain partially embeds into \mathcal{V}, the disconnected rotation of $(0,1]_{c}$.

Completeness - $Ł_{\text {Chang }}$

Theorem

Every countable perfect MV-chain partially embeds into \mathcal{V}, the disconnected rotation of $(0,1]_{c}$.

Corollary

The logic $Ł_{\text {Chang }}$ is finitely strongly complete w.r.t. \mathcal{V}.

Completeness - $Ł_{\text {Chang }}$

Theorem

Every countable perfect MV-chain partially embeds into \mathcal{V}, the disconnected rotation of $(0,1]_{c}$.

Corollary

The logic $Ł_{\text {Chang }}$ is finitely strongly complete w.r.t. \mathcal{V}.

Theorem

$Ł_{\text {Chang }}$ logic is not strongly complete w.r.t. \mathcal{V}.

Completeness - $\mathrm{BL}_{\text {Chang }}$

Theorem

Every countable $B L_{\text {Chang }}$-chain partially embeds into $\omega \mathcal{V}$.

Completeness - $\mathrm{BL}_{\text {Chang }}$

Theorem

Every countable $B L_{\text {Chang }}$-chain partially embeds into $\omega \mathcal{V}$.

Corollary

$B L_{\text {Chang }}$ enjoys the finite strong completeness w.r.t. $\omega \mathcal{V}$. As a consequence, the variety of $B L_{\text {Chang }}$-algebras is generated by the class of all ordinal sums of perfect $M V$-chains and hence is the smallest variety to contain this class of algebras.

Completeness - $\mathrm{BL}_{\text {Chang }}$

Theorem

Every countable $B L_{\text {Chang }}$-chain partially embeds into $\omega \mathcal{V}$.

Corollary

$B L_{\text {chang }}$ enjoys the finite strong completeness w.r.t. $\omega \mathcal{V}$. As a consequence, the variety of $B L_{\text {Chang }}$-algebras is generated by the class of all ordinal sums of perfect $M V$-chains and hence is the smallest variety to contain this class of algebras.

Theorem

$B L_{\text {Chang }}$ logic is not strongly complete w.r.t. $\omega \mathcal{V}$.

Bibliography I

曷
P．Aglianò，I．M．A．Ferreirim，and F．Montagna．
Basic Hoops：an Algebraic Study of Continuous t－norms．
Studia Logica，87（1）：73－98， 2007.
doi：10．1007／s11225－007－9078－1．
P．Aglianò and F．Montagna．
Varieties of BL－algebras I：general properties．
J．Pure Appl．Algebra，181（2－3）：105－129， 2003.
doi：10．1016／S0022－4049（02）00329－8．
庫
L．P．Belluce，A．Di Nola，and B．Gerla．
Perfect $M V$－algebras and their Logic．
Appl．Categor．Struct．，15（1－2）：135－151， 2007.
doi：10．1007／s10485－007－9069－4．
㦸
L．P．Belluce，A．Di Nola，and A．Lettieri．
Local MV－algebras．
Rendiconti del circolo matematico di Palermo，42（3）：347－361， 1993. doi：10．1007／BF02844626．

Bibliography II

W.J. Blok and I.M.A. Ferreirim.

On the structure of hoops.
Algebra Universalis, 43(2-3):233-257, 2000.
doi:10.1007/s000120050156.
M. Bianchi and F. Montagna.

Supersound many-valued logics and Dedekind-MacNeille completions.
Arch. Math. Log., 48(8):719-736, 2009.
doi:10.1007/s00153-009-0145-3.
L. Borkowski, editor.

Jan Łukasiewicz Selected Works.
Studies In Logic and The Foundations of Mathematics. North Holland Publishing Company - Amsterdam, Polish Scientific Publishers - Warszawa, 1970. ISBN:720422523.
宣
P. Cintula, F. Esteva, J. Gispert, L. Godo, F. Montagna, and C. Noguera.

Distinguished algebraic semantics for t-norm based fuzzy logics: methods and algebraic equivalencies.

```
Ann. Pure Appl. Log., 160(1):53-81, 2009.
doi:10.1016/j.apal.2009.01.012.
```


Bibliography III

固 P. Cintula and P. Hájek.
On theories and models in fuzzy predicate logics.
J. Symb. Log., 71(3):863-880, 2006.
doi:10.2178/jsl/1154698581.
宣
P. Cintula and P. Hájek.

Triangular norm predicate fuzzy logics.
Fuzzy Sets Syst., 161(3):311-346, 2010.
doi:10.1016/j.fss.2009.09.006.
C. C. Chang.

Algebraic Analysis of Many-Valued Logics.
Trans. Am. Math. Soc., 88(2):467-490, 1958.
http://www.jstor.org/stable/1993227.
A. Di Nola and A. Lettieri.

Perfect MV-Algebras Are Categorically Equivalent to Abelian I-Groups.
Studia Logica, 53(3):417-432, 1994.
Available on http://www.jstor.org/stable/20015734.

Bibliography IV

A. Di Nola, S. Sessa, F. Esteva, L. Godo, and P. Garcia.

The Variety Generated by Perfect BL-Algebras: an Algebraic Approach in a Fuzzy Logic Setting.
Ann. Math. Artif. Intell., 35(1-4):197-214, 2002.
doi:10.1023/A:1014539401842.F. Esteva, L. Godo, and P. Hájek.

A complete many-valued logics with product-conjunction.
Arch. Math. Log., 35(3):191-208, 1996.
doi:10.1007/BF01268618.
嗇 F. Esteva, L. Godo, P. Hájek, and F. Montagna.
Hoops and Fuzzy Logic.
J. Log. Comput., 13(4):532-555, 2003.
doi:10.1093/logcom/13.4.532.
I. Ferreirim.

On varieties and quasivarieties of hoops and their reducts.
PhD thesis, University of Illinois at Chicago, Chicago, Illinois, 1992.

Bibliography V

P. Hájek.

Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic.
Kluwer Academic Publishers, paperback edition, 1998.
ISBN:9781402003707.
P. Hájek.

On witnessed models in fuzzy logic.
Math. Log. Quart., 53(1):66-77, 2007.
doi:10.1002/malq. 200610027.
J. Łukasiewicz and A. Tarski.

Untersuchungen uber den aussagenkalkul.
In Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, volume 23, pages 30-50. 1930.
reprinted in [Bor70].
家
F. Montagna.

Completeness with respect to a chain and universal models in fuzzy logic.
Arch. Math. Log., 50(1-2):161-183, 2011.
doi:10.1007/s00153-010-0207-6.

Bibliography VI

C. Noguera, F. Esteva, and J. Gispert.

Perfect and bipartite IMTL-algebras and disconnected rotations of prelinear semihoops.
Arch. Math. Log., 44(7):869-886, 2005.
doi:10.1007/s00153-005-0276-0.

APPENDIX

Chang's MV-algebra

Definition

Chang's $M V$-algebra ([Cha58]) is defined as

$$
\mathbf{C}_{\infty}=\left\langle\left\{a_{n}: n \in \mathbb{N}\right\} \cup\left\{b_{n}: n \in \mathbb{N}\right\}, *, \Rightarrow, \sqcap, \sqcup, b_{0}, a_{0}\right\rangle .
$$

Where for each $n, m \in \mathbb{N}$, it holds that $b_{n}<a_{m}$, and, if $n<m$, then $a_{m}<a_{n}, b_{n}<b_{m}$; moreover $a_{0}=1, b_{0}=0$ (the top and the bottom element).
The operation $*$ is defined as follows, for each $n, m \in \mathbb{N}$:

$$
b_{n} * b_{m}=b_{0}, b_{n} * a_{m}=b_{\max (0, n-m)}, a_{n} * a_{m}=a_{n+m} .
$$

Disconnected rotation

Let \mathcal{A} be a l.o. cancellative hoop. We define an algebra, \mathcal{A}^{*}, called the disconnected rotation of \mathcal{A}. Let $\mathcal{A} \times\{0\}$ be a disjoint copy of A . For every $a \in A$ we write a^{\prime} instead of $\langle a, 0\rangle$. Consider $\left\langle A^{\prime}=\left\{a^{\prime}: a \in A\right\}, \leq\right\rangle$ with the inverse order and let $A^{*}:=A \cup A^{\prime}$. We extend these orderings to an order in A^{*} by putting $a^{\prime}<b$ for every $a, b \in A$. Finally, we take the following operations in $A^{*}: 1:=1_{\mathcal{A}}, 0:=1^{\prime}, \sqcap_{\mathcal{A}^{*}}, \sqcup_{\mathcal{A}^{*}}$ as the meet and the join with respect to the order over A^{*}. Moreover,

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left(\mathcal{A}_{i}\right)_{i \in I}$) is the structure whose base set is $\bigcup_{i \in I} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left(\mathcal{A}_{i}\right)_{i \in I}$) is the structure whose base set is $\bigcup_{i \in I} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left(\mathcal{A}_{i}\right)_{i \in I}$) is the structure whose base set is $\bigcup_{i \in I} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

$$
\begin{aligned}
& A_{j} \mid \\
& A_{i} \mid
\end{aligned}
$$

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left.\left(\mathcal{A}_{i}\right)_{i \in I}\right)$ is the structure whose base set is $\bigcup_{i \in I} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

$$
\begin{aligned}
& A_{j} \\
& x \Rightarrow y= \begin{cases}x \Rightarrow^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
y & \text { if } \exists i>j\left(x \in A_{i} \text { and } y \in A_{j}\right) \\
1 & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\} \text { and } y \in A_{j}\right)\end{cases} \\
& x * y= \begin{cases}x *^{A_{i}} y & \text { if } x, y \in A_{i} \\
x & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\}, y \in A_{j}\right) \\
y & \text { if } \exists i<j\left(y \in A_{i} \backslash\{1\}, x \in A_{j}\right)\end{cases}
\end{aligned}
$$

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in 1} \mathcal{A}_{i}$ (the ordinal sum of the family $\left.\left(\mathcal{A}_{i}\right)_{i \in I}\right)$ is the structure whose base set is $\bigcup_{i \in 1} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

$$
\begin{aligned}
& A_{j} \left\lvert\, \quad x \Rightarrow y= \begin{cases}x \Rightarrow^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
y & \text { if } \exists i>j\left(x \in A_{i} \text { and } y \in A_{j}\right) \\
1 & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\} \text { and } y \in A_{j}\right)\end{cases} \right. \\
& x * y= \begin{cases}x *^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
x & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\}, y \in A_{j}\right) \\
y & \text { if } \exists i<j\left(y \in A_{i} \backslash\{1\}, x \in A_{j}\right)\end{cases}
\end{aligned}
$$

- As a consequence, if $x \in A_{i} \backslash\{1\}, y \in A_{j}$ and $i<j$ then $x<y$.

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left.\left(\mathcal{A}_{i}\right)_{i \in I}\right)$ is the structure whose base set is $\bigcup_{i \in 1} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

$$
\begin{aligned}
& A_{j} \\
& x \Rightarrow y= \begin{cases}x \Rightarrow^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
y & \text { if } \exists i>j\left(x \in A_{i} \text { and } y \in A_{j}\right) \\
1 & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\} \text { and } y \in A_{j}\right)\end{cases} \\
& x * y= \begin{cases}x *^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
x & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\}, y \in A_{j}\right) \\
y & \text { if } \exists i<j\left(y \in A_{i} \backslash\{1\}, x \in A_{j}\right)\end{cases}
\end{aligned}
$$

- As a consequence, if $x \in A_{i} \backslash\{1\}, y \in A_{j}$ and $i<j$ then $x<y$.
- Note that, since every bounded Wajsberg hoop is the 0-free reduct of an MV-algebra, then the previous definition also works with these structures.

Partial algebra

Definition

Let \mathcal{A} and \mathcal{B} be two algebras of the same type \mathcal{F}. We say that

Partial algebra

Definition

Let \mathcal{A} and \mathcal{B} be two algebras of the same type \mathcal{F}. We say that

- \mathcal{A} is a partial subalgebra of \mathcal{B} if $A \subseteq B$ and for every $f \in \mathcal{F}$ and $\bar{a} \in A^{a r(f)}$

$$
f^{\mathcal{A}}(\bar{a})= \begin{cases}f^{\mathcal{B}}(\bar{a}) & \text { if } f^{\mathcal{B}}(\bar{a}) \in A \\ \text { undefined } & \text { otherwise } .\end{cases}
$$

Partial algebra

Definition

Let \mathcal{A} and \mathcal{B} be two algebras of the same type \mathcal{F}. We say that

- \mathcal{A} is a partial subalgebra of \mathcal{B} if $A \subseteq B$ and for every $f \in \mathcal{F}$ and $\bar{a} \in A^{a r(f)}$

$$
f^{\mathcal{A}}(\bar{a})= \begin{cases}f^{\mathcal{B}}(\bar{a}) & \text { if } f^{\mathcal{B}}(\bar{a}) \in A \\ \text { undefined } & \text { otherwise } .\end{cases}
$$

- \mathcal{A} is partially embeddable into \mathcal{B} when every finite partial subalgebra of \mathcal{A} is embeddable into \mathcal{B}.

Partial algebra

Definition

Let \mathcal{A} and \mathcal{B} be two algebras of the same type \mathcal{F}. We say that

- \mathcal{A} is a partial subalgebra of \mathcal{B} if $A \subseteq B$ and for every $f \in \mathcal{F}$ and $\bar{a} \in A^{a r(f)}$

$$
f^{\mathcal{A}}(\bar{a})= \begin{cases}f^{\mathcal{B}}(\bar{a}) & \text { if } f^{\mathcal{B}}(\bar{a}) \in A \\ \text { undefined } & \text { otherwise } .\end{cases}
$$

- \mathcal{A} is partially embeddable into \mathcal{B} when every finite partial subalgebra of \mathcal{A} is embeddable into \mathcal{B}.
- A class K of algebras is partially embeddable into an algebra \mathcal{A} if every finite partial subalgebra of a member of K is embeddable into \mathcal{A}.

First-order logics - syntax and semantics

- We work with (first-order) languages without equality, containing only predicate and constant symbols: as quantifiers we have \forall and \exists. The notions of terms and formulas are defined inductively like in classical case.

First-order logics - syntax and semantics

- We work with (first-order) languages without equality, containing only predicate and constant symbols: as quantifiers we have \forall and \exists. The notions of terms and formulas are defined inductively like in classical case.
- As regards to semantics, given an axiomatic extension L of $B L$ we restrict to L-chains: the first-order version of L is called $L \forall$ (see [Háj98, CH 10] for an axiomatization). A first-order \mathcal{A}-interpretation (\mathcal{A} being an L-chain) is a structure $\mathbf{M}=\left\langle M,\left\{r_{P}\right\}_{p \in \mathbf{P}},\left\{m_{c}\right\}_{c \in \mathbf{C}}\right\rangle$, where M is a non-empty set, every r_{P} is a fuzzy $\operatorname{ariety}(P)$-ary relation, over M, in which we interpretate the predicate P, and every m_{c} is an element of M, in which we map the constant c.

First-order logics - syntax and semantics

- We work with (first-order) languages without equality, containing only predicate and constant symbols: as quantifiers we have \forall and \exists. The notions of terms and formulas are defined inductively like in classical case.
- As regards to semantics, given an axiomatic extension L of $B L$ we restrict to L-chains: the first-order version of L is called $L \forall$ (see [Háj98, CH 10] for an axiomatization). A first-order \mathcal{A}-interpretation (\mathcal{A} being an L -chain) is a structure $\mathbf{M}=\left\langle M,\left\{r_{P}\right\}_{p \in \mathbf{P}},\left\{m_{c}\right\}_{c \in \mathbf{C}}\right\rangle$, where M is a non-empty set, every r_{P} is a fuzzy $\operatorname{ariety}(P)$-ary relation, over M, in which we interpretate the predicate P, and every m_{c} is an element of M, in which we map the constant c.
- Given a map $v: V A R \rightarrow M$, the interpretation of $\|\varphi\|_{\mathcal{M}, v}^{\mathcal{A}}$ in this semantics is defined in a Tarskian way: in particular the universally quantified formulas are defined as the infimum (over \mathcal{A}) of truth values, whereas those existentially quantified are evaluated as the supremum. Note that these inf and sup could not exist in \mathcal{A} : an \mathcal{A}-model \mathbf{M} is called safe if $\|\varphi\|_{\mathbf{M}, v}^{\mathcal{A}}$ is defined for every φ and v.

First-order logics - syntax and semantics

- We work with (first-order) languages without equality, containing only predicate and constant symbols: as quantifiers we have \forall and \exists. The notions of terms and formulas are defined inductively like in classical case.
- As regards to semantics, given an axiomatic extension L of $B L$ we restrict to L-chains: the first-order version of L is called $L \forall$ (see [Háj98, CH10] for an axiomatization). A first-order \mathcal{A}-interpretation (\mathcal{A} being an L -chain) is a structure $\mathbf{M}=\left\langle M,\left\{r_{P}\right\}_{p \in \mathbf{P}},\left\{m_{c}\right\}_{c \in \mathbf{c}}\right\rangle$, where M is a non-empty set, every r_{P} is a fuzzy $\operatorname{ariety}(P)$-ary relation, over M, in which we interpretate the predicate P, and every m_{c} is an element of M, in which we map the constant c.
- Given a map $v: V A R \rightarrow M$, the interpretation of $\|\varphi\|_{\mathcal{M}, v}^{\mathcal{A}}$ in this semantics is defined in a Tarskian way: in particular the universally quantified formulas are defined as the infimum (over \mathcal{A}) of truth values, whereas those existentially quantified are evaluated as the supremum. Note that these inf and sup could not exist in \mathcal{A} : an \mathcal{A}-model \mathbf{M} is called safe if $\|\varphi\|_{\mathbf{M}, v}^{\mathcal{A}}$ is defined for every φ and v.
- A model is called witnessed if the universally (existentially) quantified formulas are evaluated by taking the minimum (maximum) of truth values in place of the infimum (supremum): see [Háj07, $\mathrm{CH} 06, \mathrm{CH} 10$] for details.

First-order logics - syntax and semantics

- We work with (first-order) languages without equality, containing only predicate and constant symbols: as quantifiers we have \forall and \exists. The notions of terms and formulas are defined inductively like in classical case.
- As regards to semantics, given an axiomatic extension L of $B L$ we restrict to L-chains: the first-order version of L is called $L \forall$ (see [Háj98, CH 10] for an axiomatization). A first-order \mathcal{A}-interpretation (\mathcal{A} being an L-chain) is a structure $\mathbf{M}=\left\langle M,\left\{r_{P}\right\}_{p \in \mathbf{P}},\left\{m_{c}\right\}_{c \in \mathbf{c}}\right\rangle$, where M is a non-empty set, every r_{P} is a fuzzy $\operatorname{ariety}(P)$-ary relation, over M, in which we interpretate the predicate P, and every m_{c} is an element of M, in which we map the constant c.
- Given a map $v: V A R \rightarrow M$, the interpretation of $\|\varphi\|_{\mathcal{M}, v}^{\mathcal{A}}$ in this semantics is defined in a Tarskian way: in particular the universally quantified formulas are defined as the infimum (over \mathcal{A}) of truth values, whereas those existentially quantified are evaluated as the supremum. Note that these inf and sup could not exist in \mathcal{A} : an \mathcal{A}-model \mathbf{M} is called safe if $\|\varphi\|_{\mathbf{M}, v}^{\mathcal{A}}$ is defined for every φ and v.
- A model is called witnessed if the universally (existentially) quantified formulas are evaluated by taking the minimum (maximum) of truth values in place of the infimum (supremum): see [Háj07, $\mathrm{CH} 06, \mathrm{CH} 10$] for details.
- The notions of soundness and completeness are defined by restricting to safe models (even if in some cases it is possible to enlarge the class of models: see [BM09]): see [Háj98, CH10, CH06] for details.

First-order logics: results I

Definition

Let L be an axiomatic extension of $B L$. With $L \forall^{w}$ we define the extension of $L \forall$ with the following axioms
(C \forall)
(Cヨ)

$$
\begin{aligned}
& (\exists y)(\varphi(y) \rightarrow(\forall x) \varphi(x)) \\
& (\exists y)((\exists x) \varphi(x) \rightarrow \varphi(y)) .
\end{aligned}
$$

Theorem ([CH06, proposition 6])

$\measuredangle \forall$ coincides with $Ł \forall^{w}$, that is $Ł \forall \vdash(C \forall)$, (Cヨ).
An immediate consequence is:
Corollary
Let L be an axiomatic extension of $Ł$. Then $L \forall$ coincides with $L \forall^{w}$.

First-order logics: results II

Theorem ([CH06, theorem 8])

Let L be an axiomatic extension of BL. Then $L \forall^{w}$ enjoys the strong witnessed completeness with respect to the class K of L-chains, i.e.

$$
T \vdash_{L \forall^{W}} \varphi \quad \text { iff } \quad\|\varphi\|_{\mathrm{M}}^{\mathcal{A}}=1
$$

for every theory T, formula φ, algebra $\mathcal{A} \in K$ and witnessed \mathcal{A}-mode/ \mathbf{M} such that $\|\psi\|_{\mathbf{M}}^{\mathcal{A}}=1$ for every $\psi \in T$.

Lemma ([Mon11, lemma 1])

Let L be an axiomatic extension of $B L$, let \mathcal{A} be an L-chain, let \mathcal{B} be an L-chain such that $A \subseteq B$ and let \mathbf{M} be a witnessed \mathcal{A}-structure. Then for every formula φ and evaluation v, we have $\|\varphi\|_{\mathbf{M}, v}^{\mathcal{A}}=\|\varphi\|_{\mathbf{M}, v}^{\mathcal{B}}$.

First-order logics: results III

Theorem

There is a $Ł_{\text {Chang }}$-chain such that $Ł_{\text {Chang }} \forall$ is strongly complete w.r.t. it. More in general, every $Ł_{\text {Chang }}$-chain that is strongly complete w.r.t $Ł_{\text {Chang }}$ is also strongly complete w.r.t. Ł Chang .

For $\mathrm{BL}_{\text {Chang }} \forall$, however, the situation is not so good.

Theorem

$B L_{\text {Chang }} \forall$ cannot enjoy the completeness w.r.t. a single $B L_{\text {Chang }}$-chain.

