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Basic Logic

The formulas of BL are constructed by starting from the set of connectives
{&,→,⊥}, as follows

ϕ&ψ, ϕ→ ψ, ⊥

Derived connectives:

ϕ ∧ ψ := ϕ&(ϕ→ ψ)

¬ϕ := ϕ→ ⊥
ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)

ϕ↔ ψ := (ϕ→ ψ)&(ψ → ϕ)

ϕ g ψ := ¬(¬ϕ&¬ψ)
> := ¬⊥
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Axiomatization of BL

BL is axiomatized as follows

(ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))(A1)

(ϕ&ψ)→ ϕ(A2)

(ϕ&ψ)→ (ψ&ϕ)(A3)

(ϕ&(ϕ→ ψ))→ (ψ&(ψ → ϕ))(A4)

(ϕ→ (ψ → χ))→ ((ϕ&ψ)→ χ)(A5a)

((ϕ&ψ)→ χ)→ (ϕ→ (ψ → χ))(A5b)

((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)(A6)

⊥ → ϕ.(A7)

As an inference rule, we have modus ponens

(MP)
ϕ ϕ→ ψ

ψ
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Some axiomatic extensions of BL

Łukasiewicz logic, Ł ([ŁT30]), is obtained from BL with

¬¬ϕ→ ϕ

ŁChang is obtained from Ł by adding

2(ϕ2)↔ (2ϕ)2,

where 2ϕ means ϕ g ϕ.

Gödel logic is obtained from BL by adding

ϕ→ (ϕ&ϕ)

Product logic is obtained from BL by adding

¬ϕ ∨ ((ϕ→ (ϕ&ψ))→ ψ)
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BL-algebras

A BL-algebra is an algebraic structure of the form 〈A,u,t, ∗,⇒, 0, 1〉 such that

〈A,u,t, 0, 1〉 is a bounded lattice

〈A, ∗, 1〉 is a commutative monoid

〈∗,⇒〉 form a residuated pair, that is

z ∗ x ≤ y iff z ≤ x ⇒ y (x ⇒ y = max{z : z ∗ x ≤ y})

The following equations hold

(x ⇒ y) t (y ⇒ x) = 1.(prelinearity)

x u y = x ∗ (x ⇒ y).(divisibility)

Some derived operations:

∼ x := x ⇒ 0

x ⊕ y :=∼ (∼ x∗ ∼ y)
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Standard MV, Gödel and Product algebras

They are BL-algebras of the form 〈[0, 1], ∗,⇒,min,max, 0, 1〉.

Standard MV-algebra is denoted by [0, 1]Ł and its operations are:

x ∗ y = max(0, x + y − 1) x ⇒ y = min(1, 1− x + y) ∼ x = 1− x

Standard Gödel-algebra is denoted by [0, 1]G and its operations are:

x ∗ y = min(x , y) x ⇒ y =

{
1 if x ≤ y
y Otherwise

∼ x =

{
0 if x > 0
1 Otherwise

Standard Product-algebra is denoted by [0, 1]Π and its operations are:

x ∗ y = x · y x ⇒ y =

{
1 if x ≤ y
y
x Otherwise

∼ x =

{
0 if x > 0
1 Otherwise

( reset ) May 19, 2011 6 / 19
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Hoops

Definition ([Fer92, BF00])
A hoop is a structure A = 〈A, ∗,⇒, 1〉 such that 〈A, ∗, 1〉 is a commutative monoid, and
⇒ is a binary operation such that

x ⇒ x = 1, x ⇒ (y ⇒ z) = (x ∗ y)⇒ z and x ∗ (x ⇒ y) = y ∗ (y ⇒ x).

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is
a hoop without minimum.

Proposition ([Fer92, BF00, AFM07])

A hoop is Wajsberg iff it satisfies the equation (x ⇒ y)⇒ y = (y ⇒ x)⇒ x.

A hoop is cancellative iff it satisfies the equation x = y ⇒ (x ∗ y).

Totally ordered cancellative hoops coincide with unbounded totally ordered
Wajsberg hoops, whereas bounded Wajsberg hoops coincide with (the 0-free
reducts of) MV-algebras.
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Perfect MV-algebras. . .

Definition ([BDL93])
Let A be an MV-algebra and let x ∈ A: with ord(x) we mean the least (positive) natural
n such that xn = 0. If there is no such n, then we set ord(x) =∞.

An MV-algebra is called local if for every element x it holds that ord(x) <∞ or
ord(∼ x) <∞.

An MV-algebra is called perfect if for every element x it holds that ord(x) <∞ iff
ord(∼ x) =∞.

Theorem ([BDL93])
Every MV-chain is local.

Theorem ([NEG05, theorem 9])

Let A be an MV-algebra. The followings are equivalent:

A is a perfect MV-algebra.

A is isomorphic to the disconnected rotation of a cancellative hoop.
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. . . and the variety generated from them

Definition (Chang’s MV-algebra, [Cha58])

It is defined as C = 〈{an : n ∈ N} ∪ {bn : n ∈ N}, ∗,⇒,u,t, b0, a0〉 .
It holds that a0 > a1 > a2 . . . and b0 < b1 < b2 . . . and ai > bj for every i , j ∈ N.

The operation ∗ is defined as follows, for each n,m ∈ N:

bn ∗ bm = b0, bn ∗ am = bmax(0,n−m), an ∗ am = an+m.

Theorem ([DL94])

V(C) = V(Perfect(MV )),

Perfect(MV ) = Local(MV ) ∩ V(C).

Theorem ([DL94])

An MV-algebra is in the variety V(C) iff it satisfies the equation (2x)2 = 2(x2).

As shown in [BDG07], the logic correspondent to this variety is axiomatized as Ł
plus (2ϕ)2 ↔ 2(ϕ2): we will call it ŁChang.
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Perfect(MV ) = Local(MV ) ∩ V(C).

Theorem ([DL94])

An MV-algebra is in the variety V(C) iff it satisfies the equation (2x)2 = 2(x2).

As shown in [BDG07], the logic correspondent to this variety is axiomatized as Ł
plus (2ϕ)2 ↔ 2(ϕ2): we will call it ŁChang.
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A new disjunction connective - 1

Consider the following connective

ϕ Y ψ := ((ϕ→ (ϕ&ψ))→ ψ) ∧ ((ψ → (ϕ&ψ))→ ϕ)

Call ] the algebraic operation, over a BL-algebra, corresponding to Y; we have that

Lemma

In every MV-algebra the following equation holds

x ] y = x ⊕ y .

Corollary
In every MV-algebra the following equations are equivalent

(2x)2 = 2(x2)

(2x)2 = 2(x2).

Where 2x := x ⊕ x and 2x := x ] x.
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A new disjunction connective - 2

Proposition
Let A be a linearly ordered Wajsberg hoop. Then

If A is unbounded (i.e. a cancellative hoop), then x ] y = 1, for every x , y ∈ A.

If A is bounded, let a be its minimum. Then, by defining ∼ x := x ⇒ a and
x ⊕ y =∼ (∼ x∗ ∼ y) we have that x ⊕ y = x ] y, for every x , y ∈ A

Corollary

The equation x ] y = 1 holds in every cancellative hoop.
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A new disjunction connective - 3

Theorem ([AM03, theorem 3.7])

Every BL-chain is isomorphic to an ordinal sum whose first component is an MV-chain
and the others are totally ordered Wajsberg hoops.

Proposition

Let A =
⊕

i∈I Ai be a BL-chain. Then

x ] y =


x ⊕ y , if x , y ∈ Ai and Ai is bounded
1, if x , y ∈ Ai and Ai is unbounded
max(x , y), otherwise.

for every x , y ∈ A.
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Pseudo-perfect Wajsberg hoops

Definition

We will call pseudo-perfect Wajsberg hoops those Wajsberg hoops satisfying the
equation (2x)2 = 2(x2).

Theorem

Every totally ordered pseudo-perfect Wajsberg hoop is a totally ordered
cancellative hoop or (the 0-free reduct of) a perfect MV-chain.

The variety of pseudo-perfect Wajsberg hoops coincides with the class of the
0-free subreducts of members of V(C).

Theorem

Let WH,CH, psWH be, respectively, the varieties of Wajsberg hoops, cancellative
hoops, pseudo-perfect Wajsberg hoops. Then we have that

CH ⊂ psWH ⊂WH
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BLChang logic...

Definition
The logic BLChang is axiomatized as BL plus

2(ϕ2)↔ (2ϕ)2.

Theorem ([AM03, theorem 3.7])

Every BL-chain is isomorphic to an ordinal sum whose first component is an MV-chain
and the others are totally ordered Wajsberg hoops.

Theorem

Every BLChang-chain is isomorphic to an ordinal sum whose first component is a perfect
MV-chain and the others are totally ordered pseudo-perfect Wajsberg hoops.
It follows that every ordinal sum of perfect MV-chains is a BLChang-chain.
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. . . and some results

Theorem
The variety of BLChang-algebras contains the ones of product-algebras and
Gödel-algebras: however it does not contain the variety of MV-algebras.

Theorem
Every finite BLChang-chain is an ordinal sum of a finite number of copies of the two
elements boolean algebra. Hence the class of finite BLChang-chains coincides with the
one of finite Gödel chains.

Corollary
The finite model property does not hold, for BLChang.

( reset ) May 19, 2011 15 / 19



. . . and some results

Theorem
The variety of BLChang-algebras contains the ones of product-algebras and
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Relation with other connected varieties

In contrast with MV-algebras, the equations 2(x2) = (2x)2 and 2(x2) = (2x)2 are
not equivalent, over BL-algebras.

In fact the variety P0 of BL-algebras satisfying 2(x2) = (2x)2 is studied in
[DSE+02] and corresponds to the variety generated by all the perfect BL-algebras
(a BL-algebra A is perfect if its largest MV-subalgebra is perfect).

Which is the relation between P0 and the variety of BLChang-algebras ?

The variety of BLChang-algebras is strictly contained in P0:

Every BLChang-chain is a perfect BL-chain.
There are perfect BL-chains that are not BLChang-chains: an example is given by
C ⊕ [0, 1]Ł.
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Completeness

Theorem ([EGHM03])

Every totally ordered product chain is of the form 2⊕A, where A is a cancellative
hoop.

[0, 1]Π ' 2⊕ (0, 1]C , with (0, 1]C being the standard cancellative hoop (i.e. the
0-free reduct of [0, 1]Π \ {0}).

Theorem ([CEG+09])
Let L be an axiomatic extension of BL and A be an L-chain. The following are
equivalent

L enjoys the finite strong completeness w.r.t. A.

Every countable L-chain is partially embeddable into A.

Proposition

Product logic is finitely strongly complete w.r.t. [0, 1]Π ([EGH96]). As a consequence
every countable totally ordered cancellative hoop partially embeds into (0, 1]C .

( reset ) May 19, 2011 17 / 19



Completeness

Theorem ([EGHM03])
Every totally ordered product chain is of the form 2⊕A, where A is a cancellative
hoop.

[0, 1]Π ' 2⊕ (0, 1]C , with (0, 1]C being the standard cancellative hoop (i.e. the
0-free reduct of [0, 1]Π \ {0}).

Theorem ([CEG+09])
Let L be an axiomatic extension of BL and A be an L-chain. The following are
equivalent

L enjoys the finite strong completeness w.r.t. A.

Every countable L-chain is partially embeddable into A.

Proposition

Product logic is finitely strongly complete w.r.t. [0, 1]Π ([EGH96]). As a consequence
every countable totally ordered cancellative hoop partially embeds into (0, 1]C .

( reset ) May 19, 2011 17 / 19



Completeness

Theorem ([EGHM03])
Every totally ordered product chain is of the form 2⊕A, where A is a cancellative
hoop.

[0, 1]Π ' 2⊕ (0, 1]C , with (0, 1]C being the standard cancellative hoop (i.e. the
0-free reduct of [0, 1]Π \ {0}).

Theorem ([CEG+09])
Let L be an axiomatic extension of BL and A be an L-chain. The following are
equivalent

L enjoys the finite strong completeness w.r.t. A.

Every countable L-chain is partially embeddable into A.

Proposition

Product logic is finitely strongly complete w.r.t. [0, 1]Π ([EGH96]). As a consequence
every countable totally ordered cancellative hoop partially embeds into (0, 1]C .

( reset ) May 19, 2011 17 / 19



Completeness

Theorem ([EGHM03])
Every totally ordered product chain is of the form 2⊕A, where A is a cancellative
hoop.

[0, 1]Π ' 2⊕ (0, 1]C , with (0, 1]C being the standard cancellative hoop (i.e. the
0-free reduct of [0, 1]Π \ {0}).

Theorem ([CEG+09])
Let L be an axiomatic extension of BL and A be an L-chain. The following are
equivalent

L enjoys the finite strong completeness w.r.t. A.

Every countable L-chain is partially embeddable into A.

Proposition

Product logic is finitely strongly complete w.r.t. [0, 1]Π ([EGH96]). As a consequence
every countable totally ordered cancellative hoop partially embeds into (0, 1]C .

( reset ) May 19, 2011 17 / 19



Completeness

Theorem ([EGHM03])
Every totally ordered product chain is of the form 2⊕A, where A is a cancellative
hoop.

[0, 1]Π ' 2⊕ (0, 1]C , with (0, 1]C being the standard cancellative hoop (i.e. the
0-free reduct of [0, 1]Π \ {0}).

Theorem ([CEG+09])
Let L be an axiomatic extension of BL and A be an L-chain. The following are
equivalent

L enjoys the finite strong completeness w.r.t. A.

Every countable L-chain is partially embeddable into A.

Proposition

Product logic is finitely strongly complete w.r.t. [0, 1]Π ([EGH96]). As a consequence
every countable totally ordered cancellative hoop partially embeds into (0, 1]C .

( reset ) May 19, 2011 17 / 19



Completeness

Theorem ([EGHM03])
Every totally ordered product chain is of the form 2⊕A, where A is a cancellative
hoop.

[0, 1]Π ' 2⊕ (0, 1]C , with (0, 1]C being the standard cancellative hoop (i.e. the
0-free reduct of [0, 1]Π \ {0}).

Theorem ([CEG+09])
Let L be an axiomatic extension of BL and A be an L-chain. The following are
equivalent

L enjoys the finite strong completeness w.r.t. A.

Every countable L-chain is partially embeddable into A.

Proposition

Product logic is finitely strongly complete w.r.t. [0, 1]Π ([EGH96]). As a consequence
every countable totally ordered cancellative hoop partially embeds into (0, 1]C .

( reset ) May 19, 2011 17 / 19



Completeness

Theorem ([EGHM03])
Every totally ordered product chain is of the form 2⊕A, where A is a cancellative
hoop.

[0, 1]Π ' 2⊕ (0, 1]C , with (0, 1]C being the standard cancellative hoop (i.e. the
0-free reduct of [0, 1]Π \ {0}).

Theorem ([CEG+09])
Let L be an axiomatic extension of BL and A be an L-chain. The following are
equivalent

L enjoys the finite strong completeness w.r.t. A.

Every countable L-chain is partially embeddable into A.

Proposition

Product logic is finitely strongly complete w.r.t. [0, 1]Π ([EGH96]). As a consequence
every countable totally ordered cancellative hoop partially embeds into (0, 1]C .

( reset ) May 19, 2011 17 / 19



Completeness - ŁChang

Theorem

Every countable perfect MV-chain partially embeds into V, the disconnected rotation of
(0, 1]C .

Corollary

The logic ŁChang is finitely strongly complete w.r.t. V.

Theorem
ŁChang logic is not strongly complete w.r.t. V.
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Completeness - BLChang

Theorem
Every countable BLChang-chain partially embeds into ωV.

Corollary
BLChang enjoys the finite strong completeness w.r.t. ωV. As a consequence, the variety
of BLChang-algebras is generated by the class of all ordinal sums of perfect MV-chains
and hence is the smallest variety to contain this class of algebras.

Theorem
BLChang logic is not strongly complete w.r.t. ωV.

( reset ) May 19, 2011 19 / 19



Completeness - BLChang

Theorem
Every countable BLChang-chain partially embeds into ωV.

Corollary
BLChang enjoys the finite strong completeness w.r.t. ωV. As a consequence, the variety
of BLChang-algebras is generated by the class of all ordinal sums of perfect MV-chains
and hence is the smallest variety to contain this class of algebras.

Theorem
BLChang logic is not strongly complete w.r.t. ωV.

( reset ) May 19, 2011 19 / 19



Completeness - BLChang

Theorem
Every countable BLChang-chain partially embeds into ωV.

Corollary
BLChang enjoys the finite strong completeness w.r.t. ωV. As a consequence, the variety
of BLChang-algebras is generated by the class of all ordinal sums of perfect MV-chains
and hence is the smallest variety to contain this class of algebras.

Theorem
BLChang logic is not strongly complete w.r.t. ωV.

( reset ) May 19, 2011 19 / 19



Bibliography I
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P. Aglianò and F. Montagna.
Varieties of BL-algebras I: general properties.
J. Pure Appl. Algebra, 181(2-3):105–129, 2003.
doi:10.1016/S0022-4049(02)00329-8.

L. P. Belluce, A. Di Nola, and B. Gerla.
Perfect MV -algebras and their Logic.
Appl. Categor. Struct., 15(1-2):135–151, 2007.
doi:10.1007/s10485-007-9069-4.

L. P. Belluce, A. Di Nola, and A. Lettieri.
Local MV-algebras.
Rendiconti del circolo matematico di Palermo, 42(3):347–361, 1993.
doi:10.1007/BF02844626.

( reset ) May 19, 2011 20 / 19

http://dx.doi.org/10.1007/s11225-007-9078-1
http://dx.doi.org/10.1016/S0022-4049(02)00329-8
http://dx.doi.org/10.1007/s10485-007-9069-4
http://dx.doi.org/10.1007/BF02844626


Bibliography II

W.J. Blok and I.M.A. Ferreirim.
On the structure of hoops.
Algebra Universalis, 43(2-3):233–257, 2000.
doi:10.1007/s000120050156.

M. Bianchi and F. Montagna.
Supersound many-valued logics and Dedekind-MacNeille completions.
Arch. Math. Log., 48(8):719–736, 2009.
doi:10.1007/s00153-009-0145-3.

L. Borkowski, editor.
Jan Łukasiewicz Selected Works.
Studies In Logic and The Foundations of Mathematics. North Holland Publishing
Company - Amsterdam, Polish Scientific Publishers - Warszawa, 1970.
ISBN:720422523.

P. Cintula, F. Esteva, J. Gispert, L. Godo, F. Montagna, and C. Noguera.
Distinguished algebraic semantics for t-norm based fuzzy logics: methods and
algebraic equivalencies.
Ann. Pure Appl. Log., 160(1):53–81, 2009.
doi:10.1016/j.apal.2009.01.012.

( reset ) May 19, 2011 21 / 19

http://dx.doi.org/10.1007/s000120050156
http://dx.doi.org/10.1007/s00153-009-0145-3
http://dx.doi.org/10.1016/j.apal.2009.01.012


Bibliography III

P. Cintula and P. Hájek.
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Chang’s MV-algebra

Definition
Chang’s MV-algebra ([Cha58]) is defined as

C∞ = 〈{an : n ∈ N} ∪ {bn : n ∈ N}, ∗,⇒,u,t, b0, a0〉 .

Where for each n,m ∈ N, it holds that bn < am, and, if n < m, then am < an, bn < bm;
moreover a0 = 1, b0 = 0 (the top and the bottom element).

The operation ∗ is defined as follows, for each n,m ∈ N:

bn ∗ bm = b0, bn ∗ am = bmax(0,n−m), an ∗ am = an+m.
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Disconnected rotation

Let A be a l.o. cancellative hoop. We define an algebra, A∗, called the disconnected
rotation of A. Let A× {0} be a disjoint copy of A. For every a ∈ A we write a′ instead
of 〈a, 0〉. Consider 〈A′ = {a′ : a ∈ A},≤〉 with the inverse order and let A∗ := A ∪ A′.
We extend these orderings to an order in A∗ by putting a′ < b for every a, b ∈ A.
Finally, we take the following operations in A∗: 1 := 1A, 0 := 1′, uA∗ ,tA∗ as the meet
and the join with respect to the order over A∗. Moreover,

•

〈A,≤〉

•

〈A′,≤′〉

∼A∗ a :=

{
a′ if a ∈ A
b if a = b′ ∈ A′

a ∗A∗ b :=


a ∗A b if a, b ∈ A
∼A∗ (a⇒A∗∼A∗ b) if a ∈ A, b ∈ A′

∼A∗ (b ⇒A∗∼A∗ a) if a ∈ A′, b ∈ A
0 if a, b ∈ A′

a⇒A∗ b :=


a⇒A b if a, b ∈ A
∼A∗ (a∗A∗ ∼A∗ b) if a ∈ A, b ∈ A′

1 if a ∈ A′, b ∈ A
∼A∗ b ⇒A∼A∗ a) if a, b ∈ A′.
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Ordinal Sums

Let 〈I,≤〉 be a totally ordered set with minimum 0. For all i ∈ I, let Ai be a totally
ordered Wajsberg hoop such that for i 6= j , Ai ∩ Aj = {1}, and assume that A0 is
bounded.

Then
⊕

i∈I Ai (the ordinal sum of the family (Ai)i∈I) is the structure whose base
set is

⋃
i∈I Ai , whose bottom is the minimum of A0, whose top is 1, and whose

operations are

Aj

Ai

x ⇒ y =


x ⇒Ai y if x , y ∈ Ai

y if ∃i > j(x ∈ Ai and y ∈ Aj)

1 if ∃i < j(x ∈ Ai \ {1} and y ∈ Aj)

x ∗ y =


x ∗Ai y if x , y ∈ Ai

x if ∃i < j(x ∈ Ai \ {1}, y ∈ Aj)

y if ∃i < j(y ∈ Ai \ {1}, x ∈ Aj)

As a consequence, if x ∈ Ai \ {1}, y ∈ Aj and i < j then x < y .

Note that, since every bounded Wajsberg hoop is the 0-free reduct of an
MV-algebra, then the previous definition also works with these structures.
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Partial algebra

Definition
Let A and B be two algebras of the same type F . We say that

A is a partial subalgebra of B if A ⊆ B and for every f ∈ F and a ∈ Aar(f )

fA(a) =

{
fB(a) if fB(a) ∈ A
undefined otherwise.

A is partially embeddable into B when every finite partial subalgebra of A is
embeddable into B.

A class K of algebras is partially embeddable into an algebra A if every finite
partial subalgebra of a member of K is embeddable into A.
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First-order logics - syntax and semantics

We work with (first-order) languages without equality, containing only predicate
and constant symbols: as quantifiers we have ∀ and ∃. The notions of terms and
formulas are defined inductively like in classical case.

As regards to semantics, given an axiomatic extension L of BL we restrict to
L-chains: the first-order version of L is called L∀ (see [Háj98, CH10] for an
axiomatization). A first-order A-interpretation (A being an L-chain) is a structure
M = 〈M, {rP}p∈P, {mc}c∈C〉, where M is a non-empty set, every rP is a fuzzy
ariety(P)-ary relation, over M, in which we interpretate the predicate P, and every
mc is an element of M, in which we map the constant c.
Given a map v : VAR → M, the interpretation of ‖ϕ‖AM,v in this semantics is
defined in a Tarskian way: in particular the universally quantified formulas are
defined as the infimum (over A) of truth values, whereas those existentially
quantified are evaluated as the supremum. Note that these inf and sup could not
exist in A: an A-model M is called safe if ‖ϕ‖AM,v is defined for every ϕ and v .
A model is called witnessed if the universally (existentially) quantified formulas are
evaluated by taking the minimum (maximum) of truth values in place of the
infimum (supremum): see [Háj07, CH06, CH10] for details.
The notions of soundness and completeness are defined by restricting to safe
models (even if in some cases it is possible to enlarge the class of models: see
[BM09]): see [Háj98, CH10, CH06] for details.
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infimum (supremum): see [Háj07, CH06, CH10] for details.
The notions of soundness and completeness are defined by restricting to safe
models (even if in some cases it is possible to enlarge the class of models: see
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First-order logics: results I

Definition
Let L be an axiomatic extension of BL. With L∀w we define the extension of L∀ with the
following axioms

(∃y)(ϕ(y)→ (∀x)ϕ(x))(C∀)
(∃y)((∃x)ϕ(x)→ ϕ(y)).(C∃)

Theorem ([CH06, proposition 6])

Ł∀ coincides with Ł∀w , that is Ł∀ `(C∀),(C∃).

An immediate consequence is:

Corollary

Let L be an axiomatic extension of Ł. Then L∀ coincides with L∀w .
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First-order logics: results II

Theorem ([CH06, theorem 8])

Let L be an axiomatic extension of BL. Then L∀w enjoys the strong witnessed
completeness with respect to the class K of L-chains, i.e.

T `L∀w ϕ iff ‖ϕ‖AM = 1,

for every theory T , formula ϕ, algebra A ∈ K and witnessed A-model M such that
‖ψ‖AM = 1 for every ψ ∈ T .

Lemma ([Mon11, lemma 1])

Let L be an axiomatic extension of BL, let A be an L-chain, let B be an L-chain such
that A ⊆ B and let M be a witnessed A-structure. Then for every formula ϕ and
evaluation v, we have ‖ϕ‖AM,v = ‖ϕ‖BM,v .
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First-order logics: results III

Theorem
There is a ŁChang-chain such that ŁChang∀ is strongly complete w.r.t. it. More in general,
every ŁChang-chain that is strongly complete w.r.t ŁChang is also strongly complete w.r.t.
ŁChang∀.

For BLChang∀, however, the situation is not so good.

Theorem
BLChang∀ cannot enjoy the completeness w.r.t. a single BLChang-chain.
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