・ロト・(部・・モト・モ) 多へで

The variety generated by all the ordinal sums of perfect MV-chains

Matteo Bianchi matteo.bianchi@unimi.it

The formulas of BL are constructed by starting from the set of connectives $\{\&,\to,\bot\},$ as follows

 $\varphi \& \psi, \quad \varphi \to \psi, \quad \bot$

< E > < E >

< 口 > < 🗗

The formulas of BL are constructed by starting from the set of connectives $\{\&,\to,\bot\},$ as follows

$$\varphi \& \psi, \quad \varphi \to \psi, \quad \bot$$

Derived connectives:

$$\begin{array}{rcl} \varphi \wedge \psi & := & \varphi \& (\varphi \to \psi) \\ \neg \varphi & := & \varphi \to \bot \\ \varphi \lor \psi & := & ((\varphi \to \psi) \to \psi) \land ((\psi \to \varphi) \to \varphi) \\ \varphi \leftrightarrow \psi & := & (\varphi \to \psi) \& (\psi \to \varphi) \\ \varphi \curlyvee \psi & := & \neg (\neg \varphi \& \neg \psi) \\ \top & := & \neg \bot \end{array}$$

BL is axiomatized as follows

(A1)
$$(\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

(A2) $(\varphi \& \psi) \to \varphi$

(A3)
$$(\varphi \& \psi) \to (\psi \& \varphi)$$

(A4)
$$(\varphi \& (\varphi \to \psi)) \to (\psi \& (\psi \to \varphi))$$

(A5a)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \& \psi) \to \chi)$$

(A5b)
$$((\varphi \& \psi) \to \chi) \to (\varphi \to (\psi \to \chi))$$

(A6)
$$((\varphi \to \psi) \to \chi) \to (((\psi \to \varphi) \to \chi) \to \chi)$$

(A7) $\bot \to \varphi$.

As an inference rule, we have modus ponens

$$(\mathsf{MP}) \qquad \qquad \frac{\varphi \quad \varphi \to \psi}{\psi}$$

• Łukasiewicz logic, Ł ([ŁT30]), is obtained from BL with

 $\neg\neg\varphi \to \varphi$

• Łukasiewicz logic, Ł ([ŁT30]), is obtained from BL with

 $\neg\neg\varphi \to \varphi$

• L_{Chang} is obtained from L by adding

$$2(\varphi^2) \leftrightarrow (2\varphi)^2$$

where 2φ means $\varphi \uparrow \varphi$.

• Łukasiewicz logic, Ł ([ŁT30]), is obtained from BL with

 $\neg\neg\varphi \to \varphi$

• L_{Chang} is obtained from L by adding

$$2(\varphi^2) \leftrightarrow (2\varphi)^2$$
,

where 2φ means $\varphi \Upsilon \varphi$.

Gödel logic is obtained from BL by adding

$$\varphi
ightarrow$$
 ($\varphi \& \varphi$)

Łukasiewicz logic, Ł ([ŁT30]), is obtained from BL with

 $\neg\neg\varphi \to \varphi$

• L_{Chang} is obtained from L by adding

 $2(\varphi^2) \leftrightarrow (2\varphi)^2,$

where 2φ means $\varphi \Upsilon \varphi$.

Gödel logic is obtained from BL by adding

$$\varphi \rightarrow (\varphi \& \varphi)$$

Product logic is obtained from BL by adding

$$\neg \varphi \lor ((\varphi \to (\varphi \& \psi)) \to \psi)$$

A *BL*-algebra is an algebraic structure of the form $\langle A, \sqcap, \sqcup, *, \Rightarrow, 0, 1 \rangle$ such that

• $\langle A, \sqcap, \sqcup, 0, 1 \rangle$ is a bounded lattice

A *BL*-algebra is an algebraic structure of the form $\langle A, \sqcap, \sqcup, *, \Rightarrow, 0, 1 \rangle$ such that

- $\langle A, \sqcap, \sqcup, 0, 1 \rangle$ is a bounded lattice
- $\langle A, *, 1 \rangle$ is a commutative monoid

A *BL*-algebra is an algebraic structure of the form $\langle A, \sqcap, \sqcup, *, \Rightarrow, 0, 1 \rangle$ such that

- $\langle A, \sqcap, \sqcup, 0, 1 \rangle$ is a bounded lattice
- $\langle A, *, 1 \rangle$ is a commutative monoid
- $\langle *, \Rightarrow \rangle$ form a residuated pair, that is

$$z * x \le y$$
 iff $z \le x \Rightarrow y$ $(x \Rightarrow y = \max\{z : z * x \le y\})$

A *BL*-algebra is an algebraic structure of the form $\langle A, \sqcap, \sqcup, *, \Rightarrow, 0, 1 \rangle$ such that

- $\langle A, \sqcap, \sqcup, 0, 1 \rangle$ is a bounded lattice
- $\langle A, *, 1 \rangle$ is a commutative monoid
- $\langle \ast, \Rightarrow \rangle$ form a residuated pair, that is

$$z * x \le y$$
 iff $z \le x \Rightarrow y$ $(x \Rightarrow y = \max\{z : z * x \le y\})$

• The following equations hold

(prelinearity) (divisibility)

$$(x \Rightarrow y) \sqcup (y \Rightarrow x) = 1.$$

 $x \sqcap y = x * (x \Rightarrow y).$

A *BL*-algebra is an algebraic structure of the form $\langle A, \sqcap, \sqcup, *, \Rightarrow, 0, 1 \rangle$ such that

- $\langle A, \sqcap, \sqcup, 0, 1 \rangle$ is a bounded lattice
- $\langle A, *, 1 \rangle$ is a commutative monoid
- $\langle \ast, \Rightarrow \rangle$ form a residuated pair, that is

$$z * x \le y$$
 iff $z \le x \Rightarrow y$ $(x \Rightarrow y = \max\{z : z * x \le y\})$

• The following equations hold

(prelinearity) $(x \Rightarrow y) \sqcup (y \Rightarrow x) = 1.$ (divisibility) $x \sqcap y = x * (x \Rightarrow y).$

Some derived operations:

$$\sim x := x \Rightarrow 0$$
$$x \oplus y := \sim (\sim x * \sim y)$$

They are BL-algebras of the form $\langle [0, 1], *, \Rightarrow, \min, \max, 0, 1 \rangle$.

• Standard MV-algebra is denoted by $[0, 1]_{k}$ and its operations are:

 $x * y = \max(0, x + y - 1)$ $x \Rightarrow y = \min(1, 1 - x + y)$ $\sim x = 1 - x$

They are BL-algebras of the form $\langle [0, 1], *, \Rightarrow, \min, \max, 0, 1 \rangle$.

• Standard MV-algebra is denoted by $[0, 1]_{k}$ and its operations are:

$$x * y = \max(0, x + y - 1)$$
 $x \Rightarrow y = \min(1, 1 - x + y)$ $\sim x = 1 - x$

• Standard Gödel-algebra is denoted by $[0, 1]_G$ and its operations are:

$$x * y = \min(x, y)$$
 $x \Rightarrow y = \begin{cases} 1 & \text{if } x \le y \\ y & \text{Otherwise} \end{cases}$ $\sim x = \begin{cases} 0 & \text{if } x > 0 \\ 1 & \text{Otherwise} \end{cases}$

They are BL-algebras of the form $\langle [0, 1], *, \Rightarrow, \min, \max, 0, 1 \rangle$.

• Standard MV-algebra is denoted by $[0, 1]_{k}$ and its operations are:

$$x * y = \max(0, x + y - 1)$$
 $x \Rightarrow y = \min(1, 1 - x + y)$ $\sim x = 1 - x$

 $\bullet\,$ Standard Gödel-algebra is denoted by $[0,1]_G$ and its operations are:

$$x * y = \min(x, y)$$
 $x \Rightarrow y = \begin{cases} 1 & \text{if } x \le y \\ y & \text{Otherwise} \end{cases}$ $\sim x = \begin{cases} 0 & \text{if } x > 0 \\ 1 & \text{Otherwise} \end{cases}$

• Standard Product-algebra is denoted by $[0, 1]_{\Pi}$ and its operations are:

$$x * y = x \cdot y$$
 $x \Rightarrow y = \begin{cases} 1 & \text{if } x \le y \\ \frac{y}{x} & \text{Otherwise} \end{cases}$ $\sim x = \begin{cases} 0 & \text{if } x > 0 \\ 1 & \text{Otherwise} \end{cases}$

A *hoop* is a structure $A = \langle A, *, \Rightarrow, 1 \rangle$ such that $\langle A, *, 1 \rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$x \Rightarrow x = 1$$
, $x \Rightarrow (y \Rightarrow z) = (x * y) \Rightarrow z$ and $x * (x \Rightarrow y) = y * (y \Rightarrow x)$.

A *hoop* is a structure $A = \langle A, *, \Rightarrow, 1 \rangle$ such that $\langle A, *, 1 \rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$x \Rightarrow x = 1$$
, $x \Rightarrow (y \Rightarrow z) = (x * y) \Rightarrow z$ and $x * (x \Rightarrow y) = y * (y \Rightarrow x)$.

Definition

A *bounded* hoop is a hoop with a minimum element; conversely, an *unbounded* hoop is a hoop without minimum.

A *hoop* is a structure $A = \langle A, *, \Rightarrow, 1 \rangle$ such that $\langle A, *, 1 \rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$x \Rightarrow x = 1$$
, $x \Rightarrow (y \Rightarrow z) = (x * y) \Rightarrow z$ and $x * (x \Rightarrow y) = y * (y \Rightarrow x)$.

Definition

A *bounded* hoop is a hoop with a minimum element; conversely, an *unbounded* hoop is a hoop without minimum.

Proposition ([Fer92, BF00, AFM07])

A *hoop* is a structure $A = \langle A, *, \Rightarrow, 1 \rangle$ such that $\langle A, *, 1 \rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$x \Rightarrow x = 1$$
, $x \Rightarrow (y \Rightarrow z) = (x * y) \Rightarrow z$ and $x * (x \Rightarrow y) = y * (y \Rightarrow x)$.

Definition

A *bounded* hoop is a hoop with a minimum element; conversely, an *unbounded* hoop is a hoop without minimum.

Proposition ([Fer92, BF00, AFM07])

• A hoop is Wajsberg iff it satisfies the equation $(x \Rightarrow y) \Rightarrow y = (y \Rightarrow x) \Rightarrow x$.

A *hoop* is a structure $A = \langle A, *, \Rightarrow, 1 \rangle$ such that $\langle A, *, 1 \rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$x \Rightarrow x = 1$$
, $x \Rightarrow (y \Rightarrow z) = (x * y) \Rightarrow z$ and $x * (x \Rightarrow y) = y * (y \Rightarrow x)$.

Definition

A *bounded* hoop is a hoop with a minimum element; conversely, an *unbounded* hoop is a hoop without minimum.

Proposition ([Fer92, BF00, AFM07])

- A hoop is Wajsberg iff it satisfies the equation (x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x.
- A hoop is cancellative iff it satisfies the equation $x = y \Rightarrow (x * y)$.

A *hoop* is a structure $A = \langle A, *, \Rightarrow, 1 \rangle$ such that $\langle A, *, 1 \rangle$ is a commutative monoid, and \Rightarrow is a binary operation such that

$$x \Rightarrow x = 1$$
, $x \Rightarrow (y \Rightarrow z) = (x * y) \Rightarrow z$ and $x * (x \Rightarrow y) = y * (y \Rightarrow x)$.

Definition

A *bounded* hoop is a hoop with a minimum element; conversely, an *unbounded* hoop is a hoop without minimum.

Proposition ([Fer92, BF00, AFM07])

- A hoop is Wajsberg iff it satisfies the equation (x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x.
- A hoop is cancellative iff it satisfies the equation $x = y \Rightarrow (x * y)$.
- Totally ordered cancellative hoops coincide with unbounded totally ordered Wajsberg hoops, whereas bounded Wajsberg hoops coincide with (the 0-free reducts of) MV-algebras.

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord(x) we mean the least (positive) natural n such that $x^n = 0$. If there is no such n, then we set $ord(x) = \infty$.

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord(x) we mean the least (positive) natural n such that $x^n = 0$. If there is no such n, then we set $ord(x) = \infty$.

An MV-algebra is called *local* if for every element x it holds that ord(x) < ∞ or ord(~ x) < ∞.

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord(x) we mean the least (positive) natural n such that $x^n = 0$. If there is no such n, then we set $ord(x) = \infty$.

- An MV-algebra is called *local* if for every element x it holds that ord(x) < ∞ or ord(~ x) < ∞.
- An MV-algebra is called *perfect* if for every element x it holds that ord(x) < ∞ iff ord(~ x) = ∞.

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord(x) we mean the least (positive) natural n such that $x^n = 0$. If there is no such n, then we set $ord(x) = \infty$.

- An MV-algebra is called *local* if for every element x it holds that ord(x) < ∞ or ord(~ x) < ∞.
- An MV-algebra is called *perfect* if for every element x it holds that ord(x) < ∞ iff ord(~ x) = ∞.

Theorem ([BDL93])

Every MV-chain is local.

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord(x) we mean the least (positive) natural n such that $x^n = 0$. If there is no such n, then we set $ord(x) = \infty$.

- An MV-algebra is called *local* if for every element x it holds that ord(x) < ∞ or ord(~ x) < ∞.
- An MV-algebra is called *perfect* if for every element x it holds that ord(x) < ∞ iff ord(~ x) = ∞.

Theorem ([BDL93])

Every MV-chain is local.

Theorem ([NEG05, theorem 9])

Let A be an MV-algebra. The followings are equivalent:

イロン イヨン イヨン イヨ

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord(x) we mean the least (positive) natural n such that $x^n = 0$. If there is no such n, then we set $ord(x) = \infty$.

- An MV-algebra is called *local* if for every element x it holds that ord(x) < ∞ or ord(~ x) < ∞.
- An MV-algebra is called *perfect* if for every element x it holds that ord(x) < ∞ iff ord(~ x) = ∞.

Theorem ([BDL93])

Every MV-chain is local.

Theorem ([NEG05, theorem 9])

Let A be an MV-algebra. The followings are equivalent:

• A is a perfect MV-algebra.

イロン イヨン イヨン イヨ

Let \mathcal{A} be an MV-algebra and let $x \in \mathcal{A}$: with ord(x) we mean the least (positive) natural n such that $x^n = 0$. If there is no such n, then we set $ord(x) = \infty$.

- An MV-algebra is called *local* if for every element x it holds that ord(x) < ∞ or ord(~ x) < ∞.
- An MV-algebra is called *perfect* if for every element x it holds that ord(x) < ∞ iff ord(~ x) = ∞.

Theorem ([BDL93])

Every MV-chain is local.

Theorem ([NEG05, theorem 9])

Let A be an MV-algebra. The followings are equivalent:

- A is a perfect MV-algebra.
- *A* is isomorphic to the disconnected rotation of a cancellative hoop.

< □ > < □ > < □ > < □ > < □ >

It is defined as $C = \langle \{a_n : n \in \mathbb{N}\} \cup \{b_n : n \in \mathbb{N}\}, *, \Rightarrow, \sqcap, \sqcup, b_0, a_0 \rangle$. It holds that $a_0 > a_1 > a_2 \dots$ and $b_0 < b_1 < b_2 \dots$ and $a_i > b_i$ for every $i, j \in \mathbb{N}$.

The operation * is defined as follows, for each $n, m \in \mathbb{N}$:

$$b_n * b_m = b_0, \ b_n * a_m = b_{\max(0, n-m)}, \ a_n * a_m = a_{n+m}.$$

It is defined as $C = \langle \{a_n : n \in \mathbb{N}\} \cup \{b_n : n \in \mathbb{N}\}, *, \Rightarrow, \sqcap, \sqcup, b_0, a_0 \rangle$. It holds that $a_0 > a_1 > a_2 \dots$ and $b_0 < b_1 < b_2 \dots$ and $a_i > b_j$ for every $i, j \in \mathbb{N}$. The operation * is defined as follows, for each $n, m \in \mathbb{N}$:

$$b_n * b_m = b_0, \ b_n * a_m = b_{\max(0, n-m)}, \ a_n * a_m = a_{n+m}.$$

Theorem ([DL94])

It is defined as $C = \langle \{a_n : n \in \mathbb{N}\} \cup \{b_n : n \in \mathbb{N}\}, *, \Rightarrow, \sqcap, \sqcup, b_0, a_0 \rangle$. It holds that $a_0 > a_1 > a_2 \dots$ and $b_0 < b_1 < b_2 \dots$ and $a_i > b_j$ for every $i, j \in \mathbb{N}$. The operation * is defined as follows, for each $n, m \in \mathbb{N}$:

$$b_n * b_m = b_0, \ b_n * a_m = b_{\max(0, n-m)}, \ a_n * a_m = a_{n+m}.$$

Theorem ([DL94])

• $\mathbf{V}(C) = \mathbf{V}(Perfect(MV)),$

It is defined as $C = \langle \{a_n : n \in \mathbb{N}\} \cup \{b_n : n \in \mathbb{N}\}, *, \Rightarrow, \sqcap, \sqcup, b_0, a_0 \rangle$. It holds that $a_0 > a_1 > a_2 \dots$ and $b_0 < b_1 < b_2 \dots$ and $a_i > b_j$ for every $i, j \in \mathbb{N}$. The operation * is defined as follows, for each $n, m \in \mathbb{N}$:

$$b_n * b_m = b_0, \ b_n * a_m = b_{\max(0, n-m)}, \ a_n * a_m = a_{n+m}.$$

Theorem ([DL94])

- V(C) = V(Perfect(MV)),
- $Perfect(MV) = Local(MV) \cap \mathbf{V}(C)$.

It is defined as $C = \langle \{a_n : n \in \mathbb{N}\} \cup \{b_n : n \in \mathbb{N}\}, *, \Rightarrow, \sqcap, \sqcup, b_0, a_0 \rangle$. It holds that $a_0 > a_1 > a_2 \dots$ and $b_0 < b_1 < b_2 \dots$ and $a_i > b_j$ for every $i, j \in \mathbb{N}$. The operation * is defined as follows, for each $n, m \in \mathbb{N}$:

$$b_n * b_m = b_0, \ b_n * a_m = b_{\max(0,n-m)}, \ a_n * a_m = a_{n+m}.$$

Theorem ([DL94])

- $\mathbf{V}(C) = \mathbf{V}(Perfect(MV)),$
- $Perfect(MV) = Local(MV) \cap \mathbf{V}(C)$.

Theorem ([DL94])

An MV-algebra is in the variety V(C) iff it satisfies the equation $(2x)^2 = 2(x^2)$.

It is defined as $C = \langle \{a_n : n \in \mathbb{N}\} \cup \{b_n : n \in \mathbb{N}\}, *, \Rightarrow, \sqcap, \sqcup, b_0, a_0 \rangle$. It holds that $a_0 > a_1 > a_2 \dots$ and $b_0 < b_1 < b_2 \dots$ and $a_i > b_j$ for every $i, j \in \mathbb{N}$. The operation * is defined as follows, for each $n, m \in \mathbb{N}$:

$$b_n * b_m = b_0, \ b_n * a_m = b_{\max(0,n-m)}, \ a_n * a_m = a_{n+m}.$$

Theorem ([DL94])

- $\mathbf{V}(C) = \mathbf{V}(Perfect(MV)),$
- $Perfect(MV) = Local(MV) \cap \mathbf{V}(C)$.

Theorem ([DL94])

An MV-algebra is in the variety V(C) iff it satisfies the equation $(2x)^2 = 2(x^2)$.

As shown in [BDG07], the logic correspondent to this variety is axiomatized as \natural plus $(2\varphi)^2 \leftrightarrow 2(\varphi^2)$: we will call it \natural_{Chang} .

<ロ> <同> <同> < 回> < 回>

Consider the following connective

 $\varphi \lor \psi \mathrel{\mathop:}= ((\varphi \to (\varphi \& \psi)) \to \psi) \land ((\psi \to (\varphi \& \psi)) \to \varphi)$

Call \uplus the algebraic operation, over a BL-algebra, corresponding to \leq ; we have that

Lemma

In every MV-algebra the following equation holds

 $x \uplus y = x \oplus y$.

Consider the following connective

 $\varphi \stackrel{\vee}{=} \psi \mathrel{\mathop:}= ((\varphi \rightarrow (\varphi \& \psi)) \rightarrow \psi) \land ((\psi \rightarrow (\varphi \& \psi)) \rightarrow \varphi)$

Call \uplus the algebraic operation, over a BL-algebra, corresponding to \forall ; we have that

Lemma

In every MV-algebra the following equation holds

 $x \uplus y = x \oplus y$.

Corollary

In every MV-algebra the following equations are equivalent

$$(2x)^2 = 2(x^2)$$

 $(\overline{2}x)^2 = \overline{2}(x^2).$

Where $2x := x \oplus x$ and $\overline{2}x := x \oplus x$.

Image: A matrix

Let \mathcal{A} be a linearly ordered Wajsberg hoop. Then

Let \mathcal{A} be a linearly ordered Wajsberg hoop. Then

• If A is unbounded (i.e. a cancellative hoop), then $x \uplus y = 1$, for every $x, y \in A$.

Let \mathcal{A} be a linearly ordered Wajsberg hoop. Then

- If A is unbounded (i.e. a cancellative hoop), then $x \uplus y = 1$, for every $x, y \in A$.
- If A is bounded, let a be its minimum. Then, by defining ~ x := x ⇒ a and x ⊕ y =~ (~ x* ~ y) we have that x ⊕ y = x ⊎ y, for every x, y ∈ A

Let \mathcal{A} be a linearly ordered Wajsberg hoop. Then

- If A is unbounded (i.e. a cancellative hoop), then $x \uplus y = 1$, for every $x, y \in A$.
- If A is bounded, let a be its minimum. Then, by defining $\sim x := x \Rightarrow a$ and $x \oplus y = \sim (\sim x * \sim y)$ we have that $x \oplus y = x \uplus y$, for every $x, y \in A$

Corollary

The equation $x \uplus y = 1$ holds in every cancellative hoop.

Theorem ([AM03, theorem 3.7])

Every BL-chain is isomorphic to an <u>ordinal sum</u> whose first component is an MV-chain and the others are totally ordered Wajsberg hoops.

Theorem ([AM03, theorem 3.7])

Every BL-chain is isomorphic to an <u>ordinal sum</u> whose first component is an MV-chain and the others are totally ordered Wajsberg hoops.

Proposition

Let
$$\mathcal{A} = \bigoplus_{i \in I} \mathcal{A}_i$$
 be a BL-chain. Then
 $x \uplus y = \begin{cases} x \oplus y, & \text{if } x, y \in \mathcal{A}_i \text{ and } \mathcal{A}_i \text{ is bounded} \\ 1, & \text{if } x, y \in \mathcal{A}_i \text{ and } \mathcal{A}_i \text{ is unbounded} \\ \max(x, y), & \text{otherwise.} \end{cases}$
or every $x, y \in \mathcal{A}$.

We will call pseudo-perfect Wajsberg hoops those Wajsberg hoops satisfying the equation $(\overline{2}x)^2 = \overline{2}(x^2)$.

We will call pseudo-perfect Wajsberg hoops those Wajsberg hoops satisfying the equation $(\overline{2}x)^2 = \overline{2}(x^2)$.

Theorem

We will call pseudo-perfect Wajsberg hoops those Wajsberg hoops satisfying the equation $(\overline{2}x)^2 = \overline{2}(x^2)$.

Theorem

• Every totally ordered pseudo-perfect Wajsberg hoop is a totally ordered cancellative hoop or (the 0-free reduct of) a perfect MV-chain.

We will call pseudo-perfect Wajsberg hoops those Wajsberg hoops satisfying the equation $(\overline{2}x)^2 = \overline{2}(x^2)$.

Theorem

- Every totally ordered pseudo-perfect Wajsberg hoop is a totally ordered cancellative hoop or (the 0-free reduct of) a perfect MV-chain.
- The variety of pseudo-perfect Wajsberg hoops coincides with the class of the 0-free subreducts of members of **V**(*C*).

We will call pseudo-perfect Wajsberg hoops those Wajsberg hoops satisfying the equation $(\overline{2}x)^2 = \overline{2}(x^2)$.

Theorem

- Every totally ordered pseudo-perfect Wajsberg hoop is a totally ordered cancellative hoop or (the 0-free reduct of) a perfect MV-chain.
- The variety of pseudo-perfect Wajsberg hoops coincides with the class of the 0-free subreducts of members of **V**(*C*).

Theorem

Let $\mathbb{WH}, \mathbb{CH}, ps\mathbb{WH}$ be, respectively, the varieties of Wajsberg hoops, cancellative hoops, pseudo-perfect Wajsberg hoops. Then we have that

 $\mathbb{CH} \subset \textit{ps}\mathbb{WH} \subset \mathbb{WH}$

イロト イヨト イヨト イヨ

The logic $\mathsf{BL}_{\mathsf{Chang}}$ is axiomatized as BL plus

 $\overline{2}(\varphi^2) \leftrightarrow (\overline{2}\varphi)^2.$

The logic $\mathsf{BL}_{\mathsf{Chang}}$ is axiomatized as BL plus

 $\overline{2}(\varphi^2) \leftrightarrow (\overline{2}\varphi)^2.$

Theorem ([AM03, theorem 3.7])

Every BL-chain is isomorphic to an ordinal sum whose first component is an MV-chain and the others are totally ordered Wajsberg hoops.

The logic $\mathsf{BL}_{\mathsf{Chang}}$ is axiomatized as BL plus

 $\overline{2}(\varphi^2) \leftrightarrow (\overline{2}\varphi)^2.$

Theorem ([AM03, theorem 3.7])

Every BL-chain is isomorphic to an ordinal sum whose first component is an MV-chain and the others are totally ordered Wajsberg hoops.

Theorem

Every BL_{Chang}-chain is isomorphic to an ordinal sum whose first component is a perfect MV-chain and the others are totally ordered pseudo-perfect Wajsberg hoops. It follows that every ordinal sum of perfect MV-chains is a BL_{Chang}-chain.

The variety of BL_{Chang}-algebras contains the ones of product-algebras and Gödel-algebras: however it does not contain the variety of MV-algebras.

The variety of BL_{Chang}-algebras contains the ones of product-algebras and Gödel-algebras: however it does not contain the variety of MV-algebras.

Theorem

Every finite BL_{Chang} -chain is an ordinal sum of a finite number of copies of the two elements boolean algebra. Hence the class of finite BL_{Chang} -chains coincides with the one of finite Gödel chains.

The variety of BL_{Chang} -algebras contains the ones of product-algebras and Gödel-algebras: however it does not contain the variety of MV-algebras.

Theorem

Every finite BL_{Chang} -chain is an ordinal sum of a finite number of copies of the two elements boolean algebra. Hence the class of finite BL_{Chang} -chains coincides with the one of finite Gödel chains.

Corollary

The finite model property does not hold, for BL_{Chang}.

In contrast with MV-algebras, the equations 2(x²) = (2x)² and 2(x²) = (2x)² are not equivalent, over BL-algebras.

- In contrast with MV-algebras, the equations 2(x²) = (2x)² and 2(x²) = (2x)² are not equivalent, over BL-algebras.
- In fact the variety P_0 of BL-algebras satisfying $2(x^2) = (2x)^2$ is studied in [DSE⁺02] and corresponds to the variety generated by all the perfect BL-algebras (a BL-algebra A is perfect if its largest MV-subalgebra is perfect).

- In contrast with MV-algebras, the equations 2(x²) = (2x)² and 2(x²) = (2x)² are not equivalent, over BL-algebras.
- In fact the variety P₀ of BL-algebras satisfying 2(x²) = (2x)² is studied in [DSE⁺02] and corresponds to the variety generated by all the perfect BL-algebras (a BL-algebra A is perfect if its largest MV-subalgebra is perfect).
- Which is the relation between P₀ and the variety of BL_{Chang}-algebras ?

- In contrast with MV-algebras, the equations 2(x²) = (2x)² and 2(x²) = (2x)² are not equivalent, over BL-algebras.
- In fact the variety P_0 of BL-algebras satisfying $2(x^2) = (2x)^2$ is studied in [DSE⁺02] and corresponds to the variety generated by all the perfect BL-algebras (a BL-algebra A is perfect if its largest MV-subalgebra is perfect).
- Which is the relation between P₀ and the variety of BL_{Chang}-algebras ?

The variety of BL_{Chang} -algebras is strictly contained in P_0 :

- In contrast with MV-algebras, the equations 2(x²) = (2x)² and 2(x²) = (2x)² are not equivalent, over BL-algebras.
- In fact the variety P₀ of BL-algebras satisfying 2(x²) = (2x)² is studied in [DSE⁺02] and corresponds to the variety generated by all the perfect BL-algebras (a BL-algebra A is perfect if its largest MV-subalgebra is perfect).
- Which is the relation between P₀ and the variety of BL_{Chang}-algebras ?

The variety of BL_{Chang} -algebras is strictly contained in P_0 :

• Every BL_{Chang}-chain is a perfect BL-chain.

- In contrast with MV-algebras, the equations 2(x²) = (2x)² and 2(x²) = (2x)² are not equivalent, over BL-algebras.
- In fact the variety P_0 of BL-algebras satisfying $2(x^2) = (2x)^2$ is studied in [DSE⁺02] and corresponds to the variety generated by all the perfect BL-algebras (a BL-algebra A is perfect if its largest MV-subalgebra is perfect).
- Which is the relation between P₀ and the variety of BL_{Chang}-algebras ?

The variety of BL_{Chang} -algebras is strictly contained in P_0 :

- Every BL_{Chang}-chain is a perfect BL-chain.
- There are perfect BL-chains that are not $\mathsf{BL}_{Chang}\text{-}chains:$ an example is given by $\mathcal{C}\oplus[0,1]_k.$

・ロ・・聞・・聞・・聞・・日・

● Every totally ordered product chain is of the form 2 ⊕ A, where A is a cancellative hoop.

- Every totally ordered product chain is of the form 2 ⊕ A, where A is a cancellative hoop.
- $[0,1]_{\Pi} \simeq \mathbf{2} \oplus (0,1]_C$, with $(0,1]_C$ being the standard cancellative hoop (i.e. the 0-free reduct of $[0,1]_{\Pi} \setminus \{0\}$).

- Every totally ordered product chain is of the form 2 ⊕ A, where A is a cancellative hoop.
- $[0,1]_{\Pi} \simeq \mathbf{2} \oplus (0,1]_C$, with $(0,1]_C$ being the standard cancellative hoop (i.e. the 0-free reduct of $[0,1]_{\Pi} \setminus \{0\}$).

Theorem ([CEG+09])

Let L be an axiomatic extension of BL and \mathcal{A} be an L-chain. The following are equivalent

- Every totally ordered product chain is of the form 2 ⊕ A, where A is a cancellative hoop.
- $[0,1]_{\Pi} \simeq \mathbf{2} \oplus (0,1]_C$, with $(0,1]_C$ being the standard cancellative hoop (i.e. the 0-free reduct of $[0,1]_{\Pi} \setminus \{0\}$).

Theorem ([CEG+09])

Let L be an axiomatic extension of BL and \mathcal{A} be an L-chain. The following are equivalent

• L enjoys the finite strong completeness w.r.t. A.

- Every totally ordered product chain is of the form 2 ⊕ A, where A is a cancellative hoop.
- $[0,1]_{\Pi} \simeq \mathbf{2} \oplus (0,1]_C$, with $(0,1]_C$ being the standard cancellative hoop (i.e. the 0-free reduct of $[0,1]_{\Pi} \setminus \{0\}$).

Theorem ([CEG+09])

Let L be an axiomatic extension of BL and \mathcal{A} be an L-chain. The following are equivalent

- L enjoys the finite strong completeness w.r.t. A.
- Every countable L-chain is partially embeddable into A.

- Every totally ordered product chain is of the form 2 ⊕ A, where A is a cancellative hoop.
- $[0,1]_{\Pi} \simeq \mathbf{2} \oplus (0,1]_C$, with $(0,1]_C$ being the standard cancellative hoop (i.e. the 0-free reduct of $[0,1]_{\Pi} \setminus \{0\}$).

Theorem ([CEG+09])

Let L be an axiomatic extension of BL and \mathcal{A} be an L-chain. The following are equivalent

- L enjoys the finite strong completeness w.r.t. A.
- Every countable L-chain is partially embeddable into A.

Proposition

Product logic is finitely strongly complete w.r.t. $[0, 1]_{\Pi}$ ([EGH96]). As a consequence every countable totally ordered cancellative hoop partially embeds into $(0, 1]_C$.

イロト イヨト イヨト イヨト

Every countable perfect MV-chain partially embeds into \mathcal{V} , the disconnected rotation of $(0, 1]_C$.

Every countable perfect MV-chain partially embeds into \mathcal{V} , the disconnected rotation of $(0, 1]_{C}$.

Corollary

The logic k_{Chang} is finitely strongly complete w.r.t. V.

Every countable perfect MV-chain partially embeds into \mathcal{V} , the disconnected rotation of $(0, 1]_{C}$.

Corollary

The logic \mathcal{L}_{Chang} is finitely strongly complete w.r.t. \mathcal{V} .

Theorem

 \mathcal{E}_{Chang} logic is not strongly complete w.r.t. \mathcal{V} .

Every countable BL_{Chang} -chain partially embeds into $\omega \mathcal{V}$.

Theorem

Every countable BL_{Chang} -chain partially embeds into $\omega \mathcal{V}$.

Corollary

 BL_{Chang} enjoys the finite strong completeness w.r.t. $\omega \mathcal{V}$. As a consequence, the variety of BL_{Chang} -algebras is generated by the class of all ordinal sums of perfect MV-chains and hence is the smallest variety to contain this class of algebras.

Theorem

Every countable BL_{Chang} -chain partially embeds into $\omega \mathcal{V}$.

Corollary

 BL_{Chang} enjoys the finite strong completeness w.r.t. $\omega \mathcal{V}$. As a consequence, the variety of BL_{Chang} -algebras is generated by the class of all ordinal sums of perfect MV-chains and hence is the smallest variety to contain this class of algebras.

Theorem

 BL_{Chang} logic is not strongly complete w.r.t. $\omega \mathcal{V}$.

P. Aglianò, I.M.A. Ferreirim, and F. Montagna.
 Basic Hoops: an Algebraic Study of Continuous *t*-norms.
 Studia Logica, 87(1):73–98, 2007.
 doi:10.1007/s11225-007-9078-1.

P. Aglianò and F. Montagna.
 Varieties of BL-algebras I: general properties.
 J. Pure Appl. Algebra, 181(2-3):105–129, 2003.
 doi:10.1016/S0022-4049(02)00329-8.

L. P. Belluce, A. Di Nola, and B. Gerla. Perfect *MV*-algebras and their Logic. *Appl. Categor. Struct.*, 15(1-2):135–151, 2007. doi:10.1007/s10485-007-9069-4.

L. P. Belluce, A. Di Nola, and A. Lettieri.

Local MV-algebras.

Rendiconti del circolo matematico di Palermo, 42(3):347–361, 1993. doi:10.1007/BF02844626.

W.J. Blok and I.M.A. Ferreirim.

On the structure of hoops.

Algebra Universalis, 43(2-3):233–257, 2000. doi:10.1007/s000120050156.

- M. Bianchi and F. Montagna. Supersound many-valued logics and Dedekind-MacNeille completions. *Arch. Math. Log.*, 48(8):719–736, 2009. doi:10.1007/s00153-009-0145-3.

L. Borkowski, editor.

Jan Łukasiewicz Selected Works.

Studies In Logic and The Foundations of Mathematics. North Holland Publishing Company - Amsterdam, Polish Scientific Publishers - Warszawa, 1970. ISBN:720422523.

P. Cintula, F. Esteva, J. Gispert, L. Godo, F. Montagna, and C. Noguera. Distinguished algebraic semantics for t-norm based fuzzy logics: methods and algebraic equivalencies.

Ann. Pure Appl. Log., 160(1):53–81, 2009. doi:10.1016/j.apal.2009.01.012.

P. Cintula and P. Hájek. On theories and models in fuzzy predicate logics. J. Symb. Log., 71(3):863-880, 2006. doi:10.2178/jsl/1154698581.

P. Cintula and P. Hájek. Triangular norm predicate fuzzy logics. Fuzzy Sets Syst., 161(3):311-346, 2010. doi:10.1016/j.fss.2009.09.006.

C. C. Chang.

Algebraic Analysis of Many-Valued Logics. Trans. Am. Math. Soc., 88(2):467-490, 1958. http://www.jstor.org/stable/1993227.

A. Di Nola and A. Lettieri. Perfect MV-Algebras Are Categorically Equivalent to Abelian /-Groups. Studia Logica, 53(3):417-432, 1994. Available on http://www.jstor.org/stable/20015734.

A. Di Nola, S. Sessa, F. Esteva, L. Godo, and P. Garcia. The Variety Generated by Perfect BL-Algebras: an Algebraic Approach in a Fuzzy Logic Setting.

Ann. Math. Artif. Intell., 35(1-4):197–214, 2002. doi:10.1023/A:1014539401842.

F. Esteva, L. Godo, and P. Hájek. A complete many-valued logics with product-conjunction. *Arch. Math. Log.*, 35(3):191–208, 1996. doi:10.1007/BF01268618.

 F. Esteva, L. Godo, P. Hájek, and F. Montagna. Hoops and Fuzzy Logic. *J. Log. Comput.*, 13(4):532–555, 2003. doi:10.1093/logcom/13.4.532.

I. Ferreirim.

On varieties and quasivarieties of hoops and their reducts. PhD thesis, University of Illinois at Chicago, Chicago, Illinois, 1992.

P. Hájek.

Metamathematics of Fuzzy Logic, volume 4 of *Trends in Logic*. Kluwer Academic Publishers, paperback edition, 1998. ISBN:9781402003707.

P. Hájek.

On witnessed models in fuzzy logic.

Math. Log. Quart., 53(1):66–77, 2007. doi:10.1002/malq.200610027.

J. Łukasiewicz and A. Tarski.

Untersuchungen uber den aussagenkalkul.

In *Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie*, volume 23, pages 30–50. 1930. reprinted in [Bor70].

F. Montagna.

Completeness with respect to a chain and universal models in fuzzy logic. *Arch. Math. Log.*, 50(1-2):161–183, 2011. doi:10.1007/s00153-010-0207-6.

C. Noguera, F. Esteva, and J. Gispert.

Perfect and bipartite IMTL-algebras and disconnected rotations of prelinear semihoops.

Arch. Math. Log., 44(7):869–886, 2005. doi:10.1007/s00153-005-0276-0.

APPENDIX

 $\langle \Box \rangle \langle \Box \rangle$

Chang's MV-algebra ([Cha58]) is defined as

$$\mathbf{C}_{\infty} = \left\langle \{ a_n : n \in \mathbb{N} \} \cup \{ b_n : n \in \mathbb{N} \}, *, \Rightarrow, \sqcap, \sqcup, b_0, a_0 \right\rangle.$$

Where for each $n, m \in \mathbb{N}$, it holds that $b_n < a_m$, and, if n < m, then $a_m < a_n$, $b_n < b_m$; moreover $a_0 = 1$, $b_0 = 0$ (the top and the bottom element).

The operation * is defined as follows, for each $n, m \in \mathbb{N}$:

$$b_n * b_m = b_0, \ b_n * a_m = b_{\max(0, n-m)}, \ a_n * a_m = a_{n+m}.$$

back

Disconnected rotation

Let \mathcal{A} be a l.o. cancellative hoop. We define an algebra, \mathcal{A}^* , called the *disconnected rotation* of \mathcal{A} . Let $\mathcal{A} \times \{0\}$ be a disjoint copy of A. For every $a \in A$ we write a' instead of $\langle a, 0 \rangle$. Consider $\langle A' = \{a' : a \in A\}, \leq \rangle$ with the inverse order and let $A^* := A \cup A'$. We extend these orderings to an order in A^* by putting a' < b for every $a, b \in A$. Finally, we take the following operations in A^* : $1 := 1_{\mathcal{A}}, 0 := 1', \Box_{\mathcal{A}^*}, \sqcup_{\mathcal{A}^*}$ as the meet and the join with respect to the order over A^* . Moreover,

(reset

Let ⟨*I*, ≤⟩ be a totally ordered set with minimum 0. For all *i* ∈ *I*, let A_i be a totally ordered Wajsberg hoop such that for *i* ≠ *j*, A_i ∩ A_j = {1}, and assume that A₀ is bounded.

- Let ⟨*I*, ≤⟩ be a totally ordered set with minimum 0. For all *i* ∈ *I*, let A_i be a totally ordered Wajsberg hoop such that for *i* ≠ *j*, A_i ∩ A_j = {1}, and assume that A₀ is bounded.
- Then ⊕_{i∈I} A_i (the ordinal sum of the family (A_i)_{i∈I}) is the structure whose base set is ∪_{i∈I} A_i, whose bottom is the minimum of A₀, whose top is 1, and whose operations are

- Let ⟨*I*, ≤⟩ be a totally ordered set with minimum 0. For all *i* ∈ *I*, let A_i be a totally ordered Wajsberg hoop such that for *i* ≠ *j*, A_i ∩ A_j = {1}, and assume that A₀ is bounded.
- Then ⊕_{i∈I} A_i (the ordinal sum of the family (A_i)_{i∈I}) is the structure whose base set is ∪_{i∈I} A_i, whose bottom is the minimum of A₀, whose top is 1, and whose operations are

- Let ⟨*I*, ≤⟩ be a totally ordered set with minimum 0. For all *i* ∈ *I*, let A_i be a totally ordered Wajsberg hoop such that for *i* ≠ *j*, A_i ∩ A_j = {1}, and assume that A₀ is bounded.
- Then ⊕_{i∈I} A_i (the ordinal sum of the family (A_i)_{i∈I}) is the structure whose base set is ∪_{i∈I} A_i, whose bottom is the minimum of A₀, whose top is 1, and whose operations are

- Let ⟨*I*, ≤⟩ be a totally ordered set with minimum 0. For all *i* ∈ *I*, let *A_i* be a totally ordered Wajsberg hoop such that for *i* ≠ *j*, *A_i* ∩ *A_j* = {1}, and assume that *A*₀ is bounded.
- Then ⊕_{i∈I} A_i (the ordinal sum of the family (A_i)_{i∈I}) is the structure whose base set is ∪_{i∈I} A_i, whose bottom is the minimum of A₀, whose top is 1, and whose operations are

$$\begin{vmatrix} A_{i} \\ X \Rightarrow y = \begin{cases} x \Rightarrow^{\mathcal{A}_{i}} y & \text{if } x, y \in A_{i} \\ y & \text{if } \exists i > j(x \in A_{i} \text{ and } y \in A_{j}) \\ 1 & \text{if } \exists i < j(x \in A_{i} \setminus \{1\} \text{ and } y \in A_{j}) \\ x * y = \begin{cases} x *^{\mathcal{A}_{i}} y & \text{if } x, y \in A_{i} \\ x & \text{if } \exists i < j(x \in A_{i} \setminus \{1\}, y \in A_{j}) \\ y & \text{if } \exists i < j(y \in A_{i} \setminus \{1\}, x \in A_{j}) \end{cases} \end{vmatrix}$$

- Let (*I*, ≤) be a totally ordered set with minimum 0. For all *i* ∈ *I*, let A_i be a totally ordered Wajsberg hoop such that for *i* ≠ *j*, A_i ∩ A_j = {1}, and assume that A₀ is bounded.
- Then ⊕_{i∈I} A_i (the ordinal sum of the family (A_i)_{i∈I}) is the structure whose base set is ∪_{i∈I} A_i, whose bottom is the minimum of A₀, whose top is 1, and whose operations are

• As a consequence, if $x \in A_i \setminus \{1\}$, $y \in A_j$ and i < j then x < y.

- Let ⟨*I*, ≤⟩ be a totally ordered set with minimum 0. For all *i* ∈ *I*, let A_i be a totally ordered Wajsberg hoop such that for *i* ≠ *j*, A_i ∩ A_j = {1}, and assume that A₀ is bounded.
- Then ⊕_{i∈I} A_i (the ordinal sum of the family (A_i)_{i∈I}) is the structure whose base set is ∪_{i∈I} A_i, whose bottom is the minimum of A₀, whose top is 1, and whose operations are

$$\begin{vmatrix} A_j \\ X \Rightarrow Y = \begin{cases} x \Rightarrow^{\mathcal{A}_i} y & \text{if } x, y \in A_i \\ y & \text{if } \exists i > j(x \in A_i \text{ and } y \in A_j) \\ 1 & \text{if } \exists i < j(x \in A_i \setminus \{1\} \text{ and } y \in A_j) \\ \end{vmatrix}$$
$$\begin{vmatrix} x * y = \begin{cases} x *^{\mathcal{A}_i} y & \text{if } x, y \in A_i \\ x & \text{if } \exists i < j(x \in A_i \setminus \{1\}, y \in A_j) \\ y & \text{if } \exists i < j(y \in A_i \setminus \{1\}, x \in A_j) \end{vmatrix}$$

- As a consequence, if $x \in A_i \setminus \{1\}$, $y \in A_j$ and i < j then x < y.
- Note that, since every bounded Wajsberg hoop is the 0-free reduct of an MV-algebra, then the previous definition also works with these structures.

Let \mathcal{A} and \mathcal{B} be two algebras of the same type \mathcal{F} . We say that

(reset

- Let $\mathcal A$ and $\mathcal B$ be two algebras of the same type $\mathcal F.$ We say that
 - \mathcal{A} is a partial subalgebra of \mathcal{B} if $\mathcal{A} \subseteq \mathcal{B}$ and for every $f \in \mathcal{F}$ and $\overline{a} \in \mathcal{A}^{ar(f)}$

$$f^{\mathcal{A}}(\overline{a}) = egin{cases} f^{\mathcal{B}}(\overline{a}) & ext{if } f^{\mathcal{B}}(\overline{a}) \in \mathcal{A} \ ext{undefined} & ext{otherwise}. \end{cases}$$

◀ back

- Let $\mathcal A$ and $\mathcal B$ be two algebras of the same type $\mathcal F.$ We say that
 - A is a partial subalgebra of B if $A \subseteq B$ and for every $f \in F$ and $\overline{a} \in A^{ar(f)}$

$$f^{\mathcal{A}}(\overline{a}) = egin{cases} f^{\mathcal{B}}(\overline{a}) & ext{if } f^{\mathcal{B}}(\overline{a}) \in A \ ext{undefined} & ext{otherwise}. \end{cases}$$

• \mathcal{A} is partially embeddable into \mathcal{B} when every finite partial subalgebra of \mathcal{A} is embeddable into \mathcal{B} .

◀ back

- Let $\mathcal A$ and $\mathcal B$ be two algebras of the same type $\mathcal F.$ We say that
 - A is a partial subalgebra of B if $A \subseteq B$ and for every $f \in F$ and $\overline{a} \in A^{ar(f)}$

$$f^{\mathcal{A}}(\overline{a}) = egin{cases} f^{\mathcal{B}}(\overline{a}) & ext{if } f^{\mathcal{B}}(\overline{a}) \in A \ ext{undefined} & ext{otherwise}. \end{cases}$$

- \mathcal{A} is partially embeddable into \mathcal{B} when every finite partial subalgebra of \mathcal{A} is embeddable into \mathcal{B} .
- A class *K* of algebras is partially embeddable into an algebra *A* if every finite partial subalgebra of a member of *K* is embeddable into *A*.

◀ back

• We work with (first-order) languages without equality, containing only predicate and constant symbols: as quantifiers we have ∀ and ∃. The notions of terms and formulas are defined inductively like in classical case.

- We work with (first-order) languages without equality, containing only predicate and constant symbols: as quantifiers we have ∀ and ∃. The notions of terms and formulas are defined inductively like in classical case.
- As regards to semantics, given an axiomatic extension L of BL we restrict to L-chains: the first-order version of L is called L∀ (see [Háj98, CH10] for an axiomatization). A first-order A-interpretation (A being an L-chain) is a structure M = ⟨M, {r_P}_{P∈P}, {m_c}_{c∈C}⟩, where M is a non-empty set, every r_P is a fuzzy ariety(P)-ary relation, over M, in which we interpretate the predicate P, and every m_c is an element of M, in which we map the constant c.

- We work with (first-order) languages without equality, containing only predicate and constant symbols: as quantifiers we have ∀ and ∃. The notions of terms and formulas are defined inductively like in classical case.
- As regards to semantics, given an axiomatic extension L of BL we restrict to L-chains: the first-order version of L is called L∀ (see [Háj98, CH10] for an axiomatization). A first-order *A*-interpretation (*A* being an L-chain) is a structure M = ⟨M, {r_P}_{P∈P}, {m_c}_{c∈C}⟩, where *M* is a non-empty set, every r_P is a fuzzy ariety(*P*)-ary relation, over *M*, in which we interpretate the predicate *P*, and every m_c is an element of *M*, in which we map the constant *c*.
- Given a map $v: VAR \to M$, the interpretation of $\|\varphi\|_{M,v}^{\mathcal{A}}$ in this semantics is defined in a Tarskian way: in particular the universally quantified formulas are defined as the infimum (over \mathcal{A}) of truth values, whereas those existentially quantified are evaluated as the supremum. Note that these inf and sup could not exist in \mathcal{A} : an \mathcal{A} -model **M** is called *safe* if $\|\varphi\|_{M,v}^{\mathcal{A}}$ is defined for every φ and v.

- We work with (first-order) languages without equality, containing only predicate and constant symbols: as quantifiers we have ∀ and ∃. The notions of terms and formulas are defined inductively like in classical case.
- As regards to semantics, given an axiomatic extension L of BL we restrict to L-chains: the first-order version of L is called L∀ (see [Háj98, CH10] for an axiomatization). A first-order *A*-interpretation (*A* being an L-chain) is a structure M = ⟨M, {r_P}_{P∈P}, {m_c}_{c∈C}⟩, where *M* is a non-empty set, every r_P is a fuzzy ariety(*P*)-ary relation, over *M*, in which we interpretate the predicate *P*, and every m_c is an element of *M*, in which we map the constant *c*.
- Given a map $v: VAR \to M$, the interpretation of $\|\varphi\|_{M,v}^A$ in this semantics is defined in a Tarskian way: in particular the universally quantified formulas are defined as the infimum (over \mathcal{A}) of truth values, whereas those existentially quantified are evaluated as the supremum. Note that these inf and sup could not exist in \mathcal{A} : an \mathcal{A} -model **M** is called *safe* if $\|\varphi\|_{M,v}^A$ is defined for every φ and v.
- A model is called *witnessed* if the universally (existentially) quantified formulas are evaluated by taking the minimum (maximum) of truth values in place of the infimum (supremum): see [Háj07, CH06, CH10] for details.

- We work with (first-order) languages without equality, containing only predicate and constant symbols: as quantifiers we have ∀ and ∃. The notions of terms and formulas are defined inductively like in classical case.
- As regards to semantics, given an axiomatic extension L of BL we restrict to L-chains: the first-order version of L is called L∀ (see [Háj98, CH10] for an axiomatization). A first-order *A*-interpretation (*A* being an L-chain) is a structure M = ⟨M, {r_P}_{P∈P}, {m_c}_{c∈C}⟩, where *M* is a non-empty set, every r_P is a fuzzy ariety(*P*)-ary relation, over *M*, in which we interpretate the predicate *P*, and every m_c is an element of *M*, in which we map the constant *c*.
- Given a map $v: VAR \to M$, the interpretation of $\|\varphi\|_{M,v}^A$ in this semantics is defined in a Tarskian way: in particular the universally quantified formulas are defined as the infimum (over \mathcal{A}) of truth values, whereas those existentially quantified are evaluated as the supremum. Note that these inf and sup could not exist in \mathcal{A} : an \mathcal{A} -model **M** is called *safe* if $\|\varphi\|_{M,v}^A$ is defined for every φ and v.
- A model is called *witnessed* if the universally (existentially) quantified formulas are evaluated by taking the minimum (maximum) of truth values in place of the infimum (supremum): see [Háj07, CH06, CH10] for details.
- The notions of soundness and completeness are defined by restricting to safe models (even if in some cases it is possible to enlarge the class of models: see [BM09]): see [Háj98, CH10, CH06] for details.

Let L be an axiomatic extension of BL. With $L\forall^w$ we define the extension of $L\forall$ with the following axioms

 $\begin{array}{ll} (\mathsf{C}\forall) & (\exists y)(\varphi(y) \to (\forall x)\varphi(x)) \\ (\mathsf{C}\exists) & (\exists y)((\exists x)\varphi(x) \to \varphi(y)). \end{array}$

Theorem ([CH06, proposition 6])

 $k \forall$ coincides with $k \forall^w$, that is $k \forall \vdash (C \forall), (C \exists)$.

An immediate consequence is:

Corollary

Let L be an axiomatic extension of Ł. Then L \forall coincides with L \forall^w .

Image: A matrix

Theorem ([CH06, theorem 8])

Let L be an axiomatic extension of BL. Then $L \forall^w$ enjoys the strong witnessed completeness with respect to the class K of L-chains, i.e.

$$T \vdash_{L \forall W} \varphi \quad iff \quad \|\varphi\|_{\mathbf{M}}^{\mathcal{A}} = \mathbf{1},$$

for every theory *T*, formula φ , algebra $\mathcal{A} \in K$ and witnessed \mathcal{A} -model **M** such that $\|\psi\|_{\mathbf{M}}^{\mathbf{A}} = 1$ for every $\psi \in T$.

Lemma ([Mon11, lemma 1])

Let L be an axiomatic extension of BL, let \mathcal{A} be an L-chain, let \mathcal{B} be an L-chain such that $A \subseteq B$ and let **M** be a witnessed \mathcal{A} -structure. Then for every formula φ and evaluation v, we have $\|\varphi\|_{\mathbf{M},v}^{\mathcal{A}} = \|\varphi\|_{\mathbf{M},v}^{\mathcal{B}}$.

Theorem

There is a k_{Chang} -chain such that $k_{Chang} \forall$ is strongly complete w.r.t. it. More in general, every k_{Chang} -chain that is strongly complete w.r.t k_{Chang} is also strongly complete w.r.t. $k_{Chang} \forall$.

For BL_{Chang} , however, the situation is not so good.

Theorem

 $BL_{Chang} \forall$ cannot enjoy the completeness w.r.t. a single BL_{Chang} -chain.